Sensing Devices Mark Scheme 2

Level	International A Level	
Subject	Physics	
Exam Board	CIE	
Торіс	Current of Electricity	
Sub Topic	Sensing Devices	
Paper Type	Theory	
Booklet	Mark Scheme 2	

Time Allowed:	70 minutes
Score:	/58
Percentage:	/100

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	p.d.	= <u>work done / energy transformed</u> (from electrical to other forms) charge	B1	[1]
	(b)	(i)	maximum 20 V	A1	[1]
		(ii)	minimum = (600 / 1000) × 20 = 12 V	C1 A	[2]
	(c)	(i) (ii)	use of $1.2 \text{ k}\Omega$ 1/1200 + 1/600 = 1/ <i>R</i> , <i>R</i> = 400 Ω total parallel resistance (R ₂ + LDR) is less than R ₂ (minimum) p.d. is reduced	M1 A1 M1 A1	[2] [2]
	,				
2	(a	tota cur p.d	al resistance = 20 (kΩ) rent = 12 / 20 (mA) or potential divider formula . = $[12 / 20] \times 12 = 7.2 V$	C1 C1 A1	[3]
	(b)	par tota cur	callel resistance = 3 (k Ω) al resistance 8 + 3 = 11 (k Ω) rent = 12 / 11 × 10 ³ = 1.09 × 10 ⁻³ or 1.1 × 10 ⁻³ A	C1 C1 A1	[3]
	(c)	(i)	LDR resistance decreases total resistance (of circuit) is less hence current increases	M1 A1	[2]
		(ii)	resistance across XY is less less proportion of 12V across XY hence p.d. is less	M1 A1	[2]

(a)		either $V = E R_1 / (R_1 + R_2)$ or $I = E / (R_1 + R_2)$	C1	
		$= \frac{1800}{3000} \times 4.50 \qquad \qquad V = \frac{1800}{3000} \times 4.50$	M1	
		= 2.70 V $= 2.70 V$	A0	[2]
(b)	(i)	for a wire, $V = I \times (\rho L/A)$	M1	
		<i>I</i> , ρ and <i>A</i> are constant	A1	[2]
		30 V ~ L	70	[4]
	(::)	1 2 70 \/	۸ 1	[4]
	(11)	1 2.70 V	AI	[1]
		$2 \frac{L}{100} = \frac{2.70}{4.50}$	C1	
		L = 60.0 cm	A1	[2]
	(iii)	thermistor resistance decreases as temperature rises	M1	[0]
		SO QIM IS SHOTLER	AI	[2]
(-) (!)			D4	[4]
(a) (i)	non-inv	verting (amplifier)	B1	[1]
(ii)	(G =) 1	$1 + R_2 / R_1$	B1	[1]
(b) (i)	aain =	1 + 100 / 820	C1	
(8) (1)	output	= 17 mV	A1	[2]
(ii)	9V		A1	[
	(R ₂ / R (1 + R ₁	P_1 scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) P_1/R_2) scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii)		
	$(1 - R_2)$	$(2 R_1)$ or $R_1 R_2$ scores 0 in (a)(ii), (b)(i) and (b)(ii))		

3

4

asherrana@chemistryonlinetution.com

5		(a	(i)	point X shown correctly		B1	[1]
			(ii)	op-amp has <u>very large</u> / infinite gain non-inverting input is at earth (potential) / earthed / at 0 V if amplifier is not to saturate, inverting input must be (almost)		M1 M1	
				at earth potential / 0 (V) same potential as inverting input		A1	[3]
		(b)	(i)	total input resistance = $1.2 \text{ k}\Omega$ (amplifier) gain (= $-4.2 / 1.2$) = -3.5 (voltmeter) reading = -3.5×-1.5		C1 C1	
				(total disregard of signs or incorrect sign in answer, max 2 marks)		A1	[3]
			(ii)	(less bright so) resistance of LDR increases (amplifier) gain decreases (voltmeter) reading decreases		M1 M1 A1	[3]
6 (a)	(i) 1.	inverting (amplifier)	B1		[1]
			2	. gain of op-amp is very large / infinite	B1		
				for amplifier not to saturate, P must be at about earth / 0 V	B1 B1		[3]
		(i	i i) ir (: <i>I</i>	nput resistance is very large so) current in R_1 = current in R_2 = V_{IN} / R_1	B1 B1 B1		
			I h	= $-V_{OUT} / R_2$ (minus sign can be in either of the equations) ence gain = $V_{OUT} / V_{IN} = -R_2 / R_1$	B1 A0		[4]
	(b)) ((i) 1	. feedback resistance = $33.3 \text{ k}\Omega$	C1		
			2	gain (= 33.3 / 5) = 6.66 V_{OUT} (= 6.66 × 1.2) = 8.0 V (+ or – acceptable, allow 1 s.f.) feedback resistance = 8.33 kO	C1 A1 C1		[3]
			-	V_{OUT} (= {6.66 × 1.2} / 5) = 2.0 V (+ or – acceptable, allow 1 s.f.)	A1		[2]
		(i	i i) (I	Increase in lamp-LDR distance gives) decrease in intensity	M1		
			<u>F</u> v	eedback / LDR resistance increases oltmeter reading increases / becomes more negative	M1 A1		[3]

asherrana@chemistryonlinetution.com