## Measurement Techniques Mark Scheme 1

|               | _     |           |             |               |     |      |
|---------------|-------|-----------|-------------|---------------|-----|------|
| Level         |       |           | Internation | al A Level    |     |      |
| Subject       |       |           | Physics     |               |     |      |
| Exam Board    |       |           | CIE         |               |     |      |
| Торіс         |       |           | Measureme   | ent Technique | es  |      |
| Sub Topic     |       |           |             |               |     |      |
| Paper Type    |       |           | Theory      |               |     |      |
| Booklet       |       |           | Mark Scher  | ne 1          |     |      |
|               |       |           |             |               |     |      |
| Time Allowed: |       | 89 minute | s           |               |     |      |
| Score:        |       | /74       |             |               |     |      |
| Percentage:   |       | /100      |             |               |     |      |
|               |       |           |             |               |     |      |
|               |       |           |             |               |     |      |
| A*            | A     | В         | C           | D             | E   | U    |
| >85% '7       | 77.5% | 70%       | 62.5%       | 57.5%         | 45% | <45% |

| 1 | <b>(a</b> pre        | essure = force / area (normal to the force) [clear ratio essential]                                                                                                                           | B1      | [1] |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
|   | (b) (i)              | $P = mg / A = (5.09 \times 9.81) / A$                                                                                                                                                         | C1      |     |
|   |                      | $A = (\pi d^2 / 4) = \pi \times (9.4 \times 10^{-2})^2 / 4 \ (= 0.00694  \text{m}^2)$                                                                                                         | C1      |     |
|   |                      | P = 49.93 / 0.00694<br>= 7200 (7195)Pa (minimum of 2 s.f. required)                                                                                                                           | A1      | [3] |
|   | (ii)                 | $\Delta P / P = \Delta m / m + 2\Delta d / d$                                                                                                                                                 | C1      |     |
|   |                      | = 0.01 / 5.09 + (2 × 0.1) / 9.4 (= 0.0020 + 0.021 or 2.3%)                                                                                                                                    | C1      |     |
|   |                      | Δ <i>P</i> = 170 (165 to 167)Pa                                                                                                                                                               |         | [3] |
|   | (iii)                | $P = 7200 \pm 200 Pa$                                                                                                                                                                         |         | [1] |
|   |                      |                                                                                                                                                                                               |         |     |
| 2 | (a ρ=                | = m/V<br>$= (\pi d^2/4) \times t = 7.67 \times 10^{-7} m^3$                                                                                                                                   | C1      |     |
|   | $\rho = \rho = \rho$ | $(10074) \times t = 7.07 \times 10^{-111}$<br>$(9.6 \times 10^{-3})/[\pi (22.1/2 \times 10^{-3})^2 \times 2.00 \times 10^{-3}]$<br>$(12513 \text{ kg m}^{-3} \text{ (allow 2 or more s.f.)})$ | C<br>A1 | [3] |
|   | (b) (i)              | $\Delta \rho / \rho = \Delta m / m + \Delta t / t + 2\Delta d / d$                                                                                                                            | C1      |     |
|   |                      | = 5.21% + 0.50% + 0.905% [or correct fractional uncertainties]                                                                                                                                | C1      |     |
|   |                      | = 6.6% (6.61%)                                                                                                                                                                                | A1      | [3] |
|   | (ii)                 | $\rho = 12500 \pm 800 \mathrm{kg  m^{-3}}$                                                                                                                                                    | A1      | [1] |
|   |                      |                                                                                                                                                                                               |         |     |
|   |                      |                                                                                                                                                                                               |         |     |

3 (a SI units for *T*: s, *R*: m and *M*: kg (or seen clearly in formula) C1

$$K = T^2 M / R^3$$
 units: s<sup>2</sup> kg m<sup>-3</sup> (allow s<sup>2</sup> kg / m<sup>3</sup> or  $\frac{s^2 kg}{m^3}$ ) A1 [2]

 (b) % uncertainty in K: 1% (for T) + 3% (for R) + 2% (for M) OR = 6%
 C1

  $K = [(86400)^2 \times 6 \times 10^{24}] / (4.23 \times 10^7)^3 = 5.918 \times 10^{11}$  C1

 6% of  $K = 0.355 \times 10^{11}$  C1

  $K = (5.9 \pm 0.4) \times 10^{11}$  (SI units) correct power of ten required for both
 A1

 [incorrect % value then max. 1]
 [4]



B1 [1]

| (b) (i | i) metal wire in series with power supply and ammeter voltmeter in parallel with metal wire                                                |                |     |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|--|
|        | or variable power supply                                                                                                                   | B1             | [3] |  |
| (ii    | ) 1. intercept on graph                                                                                                                    | B1             | [1] |  |
|        | 2. scatter of readings about the best fit line                                                                                             | B1             | [1] |  |
| (iii   | ) correction for zero error explained<br>use of V and corrected I values from graph<br>resistance = $V/I = 22.(2)\Omega$ [e.g. 4.0 / 0.18] | B1<br>C1<br>A1 | [3] |  |
| (c) R  | P = 6.8 / 0.64 = 10.625                                                                                                                    | C1             |     |  |
| %      | = % V + % I<br>= (0.1 / 6.8) × 100 + (0.01 / 0.64) × 100<br>= 1.47% + 1.56%                                                                | C1             |     |  |
| A<br>R | $r = 0.0303 \times 10.025 = 0.3232$<br>= 10.6 ± 0.3 Ω                                                                                      | A1             | [3] |  |

4

|   | $V \pi P r^4$                                                                                                 |    |     |
|---|---------------------------------------------------------------------------------------------------------------|----|-----|
| 5 | (a) $\frac{1}{t} = \frac{1}{8Cl}$                                                                             |    |     |
|   | $C = [\pi \times 2.5 \times 10^3 \times (0.75 \times 10^{-3})^4] / (8 \times 1.2 \times 10^{-6} \times 0.25)$ | C1 |     |
|   | $= 1.04 \times 10^{-3} \mathrm{Nsm^{-2}}$                                                                     | A1 | [2] |

| (b) | 4 × %r                                                  | C1 |     |
|-----|---------------------------------------------------------|----|-----|
|     | $%C = %P + 4 \times %r + %V/t + %l$                     |    |     |
|     | = 2% + 5.3% + 0.83% + 0.4% (= 8.6%)                     | A1 |     |
|     | $\Delta C = \pm 0.089 \times 10^{-3} \mathrm{Nsm^{-2}}$ | A1 | [3] |

(c)  $C = (1.04 \pm 0.09) \times 10^{-3} \text{ N sm}^{-2}$  A1 [1]

| 6 | (a (i)  | metre rule / tape (not 'rule')                                                                                                                                                                           | В              | [1] |
|---|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|   | (ii)    | micrometer (screw gauge) / digital caliper                                                                                                                                                               | B1             | [1] |
|   | (iii)   | ammeter and voltmeter / ohmmeter / multimeter on 'ohm' setting                                                                                                                                           | B1             | [1] |
|   | (b) (i) | resistivity = $RA / L$<br>= $[7.5 \times \pi \times (0.38 \times 10^{-3})^2 / 4] / 1.75$<br>= $4.86 \times 10^{-7} \Omega$ m                                                                             | C1<br>M1<br>A0 | [2] |
|   | (ii)    | (uncertainty in $R =$ ) $[0.2 / 7.5] \times 100 = 2.7\%$ and (uncertainty in $L =$ ) $[3 / 1750] \times 100 = 0.17\%$ (uncertainty in $A =$ ) $2 \times (0.01 / 0.38) \times 100 = 5.3\%$ total = 8.13\% | C1<br>C1<br>C1 |     |
|   |         | uncertainty = $0.395 \times 10^{-7}$ ( $\Omega$ m)<br>( <i>missing 2 factor in uncertainty in A, then allow max 3/4</i> )                                                                                | A1             | [4] |
|   | (c) res | sistivity = $(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}) \Omega \text{ m}$                                                                                                                               | A1             | [1] |

| 7 | (a                            | 2nc<br>two                                      | d row<br>cor                            | random, 3rd row neither, 4th row systematic all correct rect scores 1 only                                                                                                                                                                                                                                                                                      |                      | B2      | [2] |
|---|-------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-----|
|   | (b)                           | (i)                                             | 1.                                      | systematic error: the average / peak is not the true value / the readings are not centred around the true value                                                                                                                                                                                                                                                 | ;                    | B1      | [1] |
|   |                               |                                                 | 2.                                      | random error: readings have positive and negative values around the peak value / values are scattered / wide range                                                                                                                                                                                                                                              |                      | B1      | [1] |
|   |                               | (ii)                                            | 1.                                      | accurate: peak / average value moves towards the true value                                                                                                                                                                                                                                                                                                     |                      | B1      | [1] |
|   |                               |                                                 | 2.                                      | precise: lines are closer together / sharper peak                                                                                                                                                                                                                                                                                                               |                      | B1      | [1] |
| 8 | co<br>ad<br>fre<br>( <i>a</i> | onneo<br>ljust<br>easu<br>eque<br>ssun<br>state | ct mi<br>c.r.o<br>ire le<br>ncy<br>ne b | crophone / (terminals of) loudspeaker to Y-plates of c.r.o.<br>. to produce steady wave of 1 (or 2) cycles / wavelengths on screen<br>ngth of cycle / wavelength $\lambda$ and note time-base b<br>= 1 / $\lambda b$<br><i>is measured as s cm</i> <sup>-1</sup> , <i>unless otherwise stated</i> )<br>nt is 'measure T, f = 1/T' then last two marks are lost) | B1<br>B1<br>M1<br>A1 | 1<br>[4 | ]   |
| 9 | (a)                           | acc                                             | epta                                    | ble straight line drawn (touching every point)                                                                                                                                                                                                                                                                                                                  | B1                   | [1]     |     |
|   | (b)                           | the<br>d is<br>('d i                            | dista<br>the<br>is no                   | ance fallen is not <i>d</i><br>distance fallen plus the diameter of the ball<br>t measured to the bottom of the ball' scores 2/2)                                                                                                                                                                                                                               | C1<br>A1             | [2]     |     |
|   | (c)                           | (i)                                             | diar<br>no e                            | meter: allow 1.5 ± 0.5 cm (accept one SF)<br>ecf from (a)                                                                                                                                                                                                                                                                                                       | A1                   | [1]     |     |
|   |                               | (ii)                                            | grad<br>grad<br>g =                     | dient = 4.76, $\pm$ 0.1 with evidence that origin has not been used<br>dient = $g/2$<br>9.5 m s <sup>-2</sup>                                                                                                                                                                                                                                                   | C1<br>C1<br>A1       | [3]     |     |

| 10 | (a) | micrometer/screw gauge/digital callipers |                                                              | B1       | [1] |
|----|-----|------------------------------------------|--------------------------------------------------------------|----------|-----|
|    | (b) | (i)                                      | look/check for zero error                                    | B1       | [1] |
|    |     | (ii)                                     | take several readingsaround the circumference/along the wire | M1<br>A1 | [2] |

| 11 | (a  | (i) 1% of ±2.05 is ±0.02                                                                                                        | A1       | [1] |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|    |     | (ii) max. value is 2.08 V                                                                                                       | A1       | [1] |
|    | (b) | there may be a zero error/calibration error/systematic error<br>which makes all readings either higher or lower than true value | M1<br>A1 | [2] |

