Measurement Techniques Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Measurement Techniques
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

1 (a pressure = force / area (normal to the force) [clear ratio essential]
(b) (i) $P=m g / A=(5.09 \times 9.81) / A$
$A=\left(\pi d^{2} / 4\right)=\pi \times\left(9.4 \times 10^{-2}\right)^{2} / 4\left(=0.00694 \mathrm{~m}^{2}\right)$
$P=49.93 / 0.00694$
$=7200(7195) \mathrm{Pa}$ (minimum of 2 s.f. required)
(ii) $\Delta P / P=\Delta m / m+2 \Delta d / d$

$$
\begin{equation*}
=0.01 / 5.09+(2 \times 0.1) / 9.4(=0.0020+0.021 \text { or } 2.3 \%) \tag{C1}
\end{equation*}
$$

$$
\Delta P=170(165 \text { to } 167) \mathrm{Pa}
$$

(iii) $P=7200 \pm 200 \mathrm{~Pa}$
$V=\left(\pi d^{2} / 4\right) \times t=7.67 \times 10^{-7} \mathrm{~m}^{3}$
$\rho=\left(9.6 \times 10^{-3}\right) /\left[\pi\left(22.1 / 2 \times 10^{-3}\right)^{2} \times 2.00 \times 10^{-3}\right]$
C $\rho=12513 \mathrm{~kg} \mathrm{~m}^{-3}$ (allow 2 or more s.f.)

A1
(b) (i) $\Delta \rho / \rho=\Delta m / m+\Delta t / t+2 \Delta d / d \quad$ C1
$=5.21 \%+0.50 \%+0.905 \% \quad[$ or correct fractional uncertainties $] \quad \mathrm{C} 1$
$=6.6 \%(6.61 \%)$
A1
A1 [1]
(ii) $\rho=12500 \pm 800 \mathrm{~kg} \mathrm{~m}^{-3}$

3
(a SI units for $T: \mathrm{s}, R: \mathrm{m}$ and M : kg (or seen clearly in formula)

$$
K=T^{2} M / R^{3} \text { units: } \mathrm{s}^{2} \mathrm{~kg} \mathrm{~m}^{-3} \quad \text { (allow } \mathrm{s}^{2} \mathrm{~kg} / \mathrm{m}^{3} \text { or } \frac{\mathrm{s}^{2} \mathrm{~kg}}{\mathrm{~m}^{3}} \text {) }
$$

(b) $\%$ uncertainty in $K: 1 \%$ (for T) $+3 \%($ for $R)+2 \%($ for M) $\mathrm{OR}=6 \%$
$K=\left[(86400)^{2} \times 6 \times 10^{24}\right] /\left(4.23 \times 10^{7}\right)^{3}=5.918 \times 10^{11}$ C1
6% of $K=0.355 \times 10^{11}$ C1
$K=(5.9 \pm 0.4) \times 10^{11}$ (SI units) correct power of ten required for both [incorrect \% value then max. 1]

4 (a resistance $=$ potential difference / current
(b) (i) metal wire in series with power supply and ammeter
voltmeter in parallel with metal wire
rheostat in series with power supply or potential divider arrangement or variable power supply
(ii) 1. intercept on graph
2. scatter of readings about the best fit line
(iii) correction for zero error explained
use of V and corrected I values from graph C1 resistance $=V / I=22$.(2) Ω [e.g. $4.0 / 0.18$] A1
(c) $R=6.8 / 0.64=10.625$
$\% R=\% V+\% I$
$=(0.1 / 6.8) \times 100+(0.01 / 0.64) \times 100$

$$
=1.47 \%+1.56 \%
$$

$$
\Delta R=0.0303 \times 10.625=0.32 \Omega
$$

$$
R \quad=10.6 \pm 0.3 \Omega
$$

(a) $\frac{V}{t}=\frac{\pi P r^{4}}{8 C l}$
$C=\left[\pi \times 2.5 \times 10^{3} \times\left(0.75 \times 10^{-3}\right)^{4}\right] /\left(8 \times 1.2 \times 10^{-6} \times 0.25\right)$ $=1.04 \times 10^{-3} \mathrm{Ns} \mathrm{m}^{-2}$
C1
A1
(b) $4 \times \% r$
$\% C=\% P+4 \times \% r+\% V / t+\% l$
$=2 \%+5.3 \%+0.83 \%+0.4 \% ~(=8.6 \%)$ $\Delta C= \pm 0.089 \times 10^{-3} \mathrm{Ns} \mathrm{m}^{-2}$

C1
A1
A1
(c) $\quad C=(1.04 \pm 0.09) \times 10^{-3} \mathrm{Ns} \mathrm{m}^{-2}$

A1
(a (i) metre rule / tape (not 'rule')

B

B1
(iii) ammeter and voltmeter / ohmmeter / multimeter on 'ohm' setting
(b) (i) resistivity $=R A / L$

$$
\begin{array}{lr}
=\left[7.5 \times \pi \times\left(0.38 \times 10^{-3}\right)^{2} / 4\right] / 1.75 & \text { M1 } \\
=4.86 \times 10^{-7} \Omega \mathrm{~m} & \text { A0 }
\end{array}
$$

(ii) (uncertainty in $R=$) $[0.2 / 7.5] \times 100=2.7 \%$ and (uncertainty in $L=$) $[3 / 1750] \times 100=0.17 \%$
(c) resistivity $=\left(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}\right) \Omega \mathrm{m}$

7 (a 2nd row random, 3rd row neither, 4th row systematic all correct

 B2 two correct scores 1 only(b) (i) 1. systematic error: the average / peak is not the true value / the readings are not centred around the true value
2. random error: readings have positive and negative values around the peak value / values are scattered / wide range
(ii) 1. accurate: peak / average value moves towards the true value
2. precise: lines are closer together / sharper peak

B1
8 connect microphone / (terminals of) loudspeaker to Y-plates of c.r.o. B1
adjust c.r.o. to produce steady wave of 1 (or 2) cycles / wavelengths on screen B1
measure length of cycle / wavelength λ and note time-base b M1
frequency $=1 / \lambda b$ A1(assume b is measured as $\mathrm{s} \mathrm{cm}^{-1}$, unless otherwise stated)
(if statement is 'measure $T, \mathrm{f}=1 / T$ then last two marks are lost)B1
(b) the distance fallen is not d
('d is not measured to the bottom of the ball' scores $2 / 2$)
(c) (i) diameter: allow $1.5 \pm 0.5 \mathrm{~cm}$ (accept one SF) no ecf from (a)
(ii) gradient $=4.76, \pm 0.1$ with evidence that origin has not been used

[2]

11 (a (i) 1% of ± 2.05 is ± 0.02 A1
(ii) max. value is 2.08 V
(b) there may be a zero error/calibration error/systematic error M1
which makes all readings either higher or lower than true value
A1

