Measurement Techniques

Mark Scheme 3

Level	International A Level					
Subject	Physics					
Exam Board	CIE					
Topic	Measurement Techniques					
Sub Topic						
Paper Type	Theory					
Booklet	Mark Scheme 3					

Time Allowed: 52 minutes

Score: /43

Percentage: /100

A*	Α –	В	С	D	-E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a (i) amplitude scale reading 2.2 (cm) amplitude = $2.2 \times 2.5 = 5.5 \,\text{mV}$

[2]

(ii) time period scale reading = 3.8 (cm) time period = $3.8 \times 0.5 \times 10^{-3} = 0.0019$ (s)

frequency
$$f = 1 / 0.0019 = 530 (526)$$
 Hz

Α1 [3]

(iii) uncertainty in reading = \pm 0.2 in 3.8 (cm) or 5.3% or 0.2 in 7.6 (cm) or 2.6% [allow other variations of the distance on the x-axis]

A1 [2]

(b) frequency = $530 \pm 30 \,\text{Hz}$ or $530 \pm 10 \,\text{Hz}$

[1]

(a $d = v \times t$ C1 2 $t = 0.2 \times 4$ (allow $t = 0.2 \times 2$) C1 $d = 3 \times 10^8 \times 0.8 \times 10^{-6}$ OR $3 \times 10^8 \times 0.4 \times 10^{-6}$ C1 d = 240 m hence distance from source to reflector = 120 m Α1 [4]

(b) speed of sound 300 cf speed of light 3×10^8 OR time = 240 / 300 = 0.8OR time = 120 / 300 (= 0.4)C1 sound slower by factor of 10⁶ OR time for one division 0.8 / 4 OR time for one division 0.4 / 2 C1 time base setting 0.2 s cm⁻¹ [unit required] [3]

Α1

3	(a)	either $P \propto V^2$ or $P = V^2/R$ reduction = $(230^2 - 220^2)/230^2$ = 8.5 %	A1	[2]
	(b)	(i) zero	A1	[1]
		(ii) 0.3(0)A	A1	[1]
	(c)	(i) correct plots to within ± 1 mm	B1	[1]
		(ii) <u>reasonable line/curve</u> through points giving current as 0.12A allow ± 0.005A)	B1	[1]
		(iii) $V = IR$	A1	[2]
	(d)	circuit acts as a potential divider/current divides/current in AC not the same as current in BC	B1 B1 B1	[2]

4 (a) C1 uses a tangent (anywhere), not a single point В1 draws tangent at correct position acceleration = 1.7 ± 0.1 A2 [4] (outside 1.6 \rightarrow 1.8 but within 1.5 \rightarrow 1.9, allow 1 mark) (b) because slope (of tangent of graph) is decreasing M1 acceleration is decreasing Α1 [2] e.g. air resistance increases (with speed) (ii) (angle of) slope of ramp decreases B1 [1] (c) scatter of points about line В1 (i) [1] intercept / line does not go through origin В1 (ii) [1]

from infinity (to the point) [2] Α1 (b) (i) inside the sphere, the potential would be constant В1 [1] (ii) for point charge, Vx is constant B1 co-ordinates clear and determines two values of Vx at least 4 cm apart M1 conclusion made clear Α1 [3] (c) $q = 4\pi \varepsilon_0 Vx$ $q = 4\pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}$ M1 $= 2.0 \times 10^{-10} \text{ C}$ Α1

(a work done in moving unit positive charge

5

M1

[2]