Practical Circuits & Kirchoff's Law

Question paper 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	D.C. Circuits
Sub Topic	Practical Circuits & Kirchoff's Law
Paper Type	Theory
Booklet	Question paper 4

Time Allowed: 87 minutes

Score: /72

Percentage: /100

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(b)	Define poter	itial difference.					
(c)	Determine th	ne SI base units of re	esistance. S	show your wo	orking.		
				units	XTT T	NIE	

(a) Use the definition of work done to show that the SI base units of energy are $kg\,m^2\,s^{-2}$.

2 (a) On Fig. 5.1, sketch the temperature characteristic of a thermistor.

(b) A potential divider circuit is shown in Fig. 5.2.

Fig. 5.2

The battery of electromotive force (e.m.f.) 12V and negligible internal resistance is connected in series with resistors X and Y and thermistor Z. The resistance of Y is $15\,\mathrm{k}\Omega$ and the resistance of Z at a particular temperature is $3.0\,\mathrm{k}\Omega$. The potential difference (p.d.) across Y is $8.0\,\mathrm{V}$.

(i)	Explain why the power transformed in the battery equals the total power transformed in
	X, Y and Z.

.....[1]

(ii) Calculate the current in the circuit.

[2]

resistance = Ω [3]		
ed.	The temperature of Z is increased.	(iv)
he potential difference across Z.	State and explain the effect on the p	
[2]		

(iii) Calculate the resistance of X.

3 (a) A wire has length 100 cm and diameter 0.38 mm. The metal of the wire has resistivity $4.5 \times 10^{-7} \, \Omega \, \text{m}$.

Show that the resistance of the wire is 4.0Ω .

[3]

(b) The ends B and D of the wire in (a) are connected to a cell X, as shown in Fig. 6.1.

The cell X has electromotive force (e.m.f.) 2.0V and internal resistance 1.0Ω .

A cell Y of e.m.f. 1.5V and internal resistance $0.50\,\Omega$ is connected to the wire at points B and C, as shown in Fig. 6.1.

The point C is distance *l* from point B. The current in cell Y is zero.

Calculate

(i) the current in cell X,

	p.d. =		
(iii) the distance <i>l.</i>			
	<i>l</i> =		C
than its terminal p.d.	s increased. Expla	•	
than its terminal p.d.			
than its terminal p.d.			
than its terminal p.d.			
than its terminal p.d.			
than its terminal p.d.			

(ii) the potential difference (p.d.) across the wire BD,

		[2]
(b)		attery of e.m.f. 12V and internal resistance 0.50 Ω is connected to two identical lamps, as wn in Fig. 6.1.
		Fig. 6.1 th lamp has constant resistance. The power rating of each lamp is 48W when connected
	(i)	oss a p.d. of 12V. Explain why the power dissipated in each lamp is not 48W when connected as shown in
		Fig. 6.1.
	(ii)	Calculate the resistance of one lamp.
		resistance = Ω [2]

((iii)	Calculate the	e current in the battery.	
				current = A [2]
				- Current =
	(iv)	Calculate the	e power dissipated in one	lamp.
				power = W [2]
(c)			amp is placed in parallel ffect on the terminal p.d. o	with the battery in the circuit of Fig. 6.1. Describe of the battery.
				[2]

5 A potentiometer circuit that is used as a means of comparing potential differences is shown in Fig. 5.1.

Fig. 5.1

A cell of e.m.f. E_1 and internal resistance r_1 is connected in series with a resistor of resistance R_1 and a uniform metal wire of total resistance R_2 .

A second cell of e.m.f. E_2 and internal resistance r_2 is connected in series with a sensitive ammeter and is then connected across the wire at BJ. The connection at J is halfway along the wire. The current directions are shown on Fig. 5.1.

- (a) Use Kirchhoff's laws to obtain the relation
 - (i) between the currents I_1 , I_2 and I_3 ,

г.		1
17	1	ı
		1

(ii) between E_1 , R_1 , R_2 , r_1 , I_1 and I_2 in loop HBJFGH,

(iii) between E_1 , E_2 , r_1 , r_2 , R_1 , R_2 , I_1 and I_3 in the loop HBCDJFGH.

(b) The connection at J is moved along the wire. Explain why the reading on the ammeter changes.

- - **(b)** The variation with potential difference V of the current I in a component Y and in a resistor R are shown in Fig. 6.1.

Fig. 6.1

		e Fig. 6.1 to explain how it can be deduced that resistor R has a constant resistance 20Ω .
	••••	
	••••	[2]
(c)		e component Y and the resistor R in (b) are connected in parallel as shown in .6.2.
		E Y R 20Ω
		Fig. 6.2
		pattery of e.m.f. \boldsymbol{E} and negligible internal resistance is connected across the parallel inbination.
	Use	e data from Fig. 6.1 to determine
	(i)	the current in the battery for an e.m.f. E of 6.0V,
		current =A [1]
	(ii)	the total resistance of the circuit for an e.m.f. of 8.0 V.

resistance = Ω [2]

(d) The circuit of Fig. 6.2 is now re-arranged as shown in Fig. 6.3.

Fig. 6.3

The current in the circuit is 0.20 A.

(i) Use Fig. 6.1 to determine the e.m.f. E of the battery.

(ii) Calculate the total power dissipated in component Y and resistor R.

7 Fig. 6.1 shows the variation with applied potential difference *V* of the current *I* in an electrical component C.

Fig. 6.1

(a) (i) State, with a reason, whether the resistance of component C increases or decreases with increasing potential difference.

....

(ii) Determine the resistance of component C at a potential difference of 4.0 V.

resistance = Ω [2]

(b) Component C is connected in parallel with a resistor R of resistance 1500Ω and a battery of e.m.f. E and negligible internal resistance, as shown in Fig. 6.2.

Fig. 6.2

- (i) On Fig. 6.1, draw a line to show the variation with potential difference *V* of the current *I* in resistor R. [2]
- (ii) Hence, or otherwise, use Fig. 6.1 to determine the current in the battery for an e.m.f. of 2.0 V.

current =		A [2]
-----------	--	-------

(c) The resistor R of resistance $1500\,\Omega$ and the component C are now connected in series across a supply of e.m.f. 7.0 V and negligible internal resistance.

dissipate thermal energy at a greater rate.

Using information from Fig. 6.1, state and explain which component, R or C, will

8 A filament lamp operates normally at a potential difference (p.d.) of 6.0 V. The variation with p.d. V of the current *I* in the lamp is shown in Fig. 5.1.

Fig.5.1

- (a) Use Fig. 5.1 to determine, for this lamp,
 - (i) the resistance when it is operating at a p.d. of 6.0 V,

(ii) the change in resistance when the p.d. increases from 6.0 V to 8.0 V.

(b) The lamp is connected into the circuit of Fig. 5.2.

Fig.5.2

R is a fixed resistor of resistance 200 ${\bf n}$. The battery has e.m.f. E and negligible internal resistance.

- (i) On Fig. 5.1, draw a line to show the variation with p.d. ${\bf V}$ of the current ${\bf I}$ in the resistor ${\bf R}$
- (ii) Determine the e.m.f. of the battery for the lamp to operate normally.

e.m.f. = V