Practical Circuits \& Kirchoff's

Law

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	D.C. Circuits
Sub Topic	Practical Circuits \& Kirchoff's Law
Paper Type	Theory
Booklet	Mark Scheme 1

(b) initial straight line from $(0,0)$ into curve with decreasing gradient but not to horizontal
(c) (i) $R=12^{2} / 36=4.0 \Omega$

> or

$$
\begin{equation*}
I=P / V=36 / 12=3.0 \mathrm{~A} \text { and } R=12 / 3.0=4.0 \Omega \tag{A1}
\end{equation*}
$$

$$
\text { (ii) } \begin{aligned}
\text { lost volts } & =0.5 \times 2.8=1.4(\mathrm{~V}) & & E=12=2.8 \times(R+r) \\
R=V / I & =(12-1.4) / 2.8 & & \text { or }(R+r)=4.29 \Omega \\
& =3.8(3.79) \Omega & & \text { or } R=3.8 \Omega
\end{aligned}
$$

(d) resistance of the lamp increases with increase of V or I
C1

A1

B1

2 (a due to the lost volts in internal resistance/cell or energy losses in the internal resistance/cell
(b) (i) $V=I R$

C1

$$
=1.2 \times 6=7.2 \mathrm{~V}
$$

A
resistance of $Y+r=4.8 / 1.2=4(\Omega)$
resistance of $Y=4-0.5=3.5 \Omega$
or

$$
R_{\text {total }}=12 / 1.2=10(\Omega)
$$

$$
X+r=6.5(\Omega)
$$

$$
\text { resistance of } \mathrm{Y}=3.5 \Omega
$$

(iii) $P=I^{2} r$

$$
=(1.2)^{2} \times 0.5=0.72 \mathrm{~W}
$$

(c) terminal p.d. increases as R is increased current decreases so there are less lost volts
B1

3 (a (i) in series $2 X$ or in parallel $X / 2$
other relationship given and $4 \times$ greater in series (than in parallel)
(ii) due to the internal resistance
total resistance for series circuit is not four times greater than resistance for parallel circuit

B1
(iii) 1. $E=I_{1}(2 X+r)$ or $12=1 \cdot 2(2 X+r)$

A1
2. $E=I_{2}(X / 2+r)$ or $12=3.0(X / 2+r)$

A1
(iv) $2 X+r=10$ and $X / 2+r=4$ $X=4.0 \Omega$
(b) $P=I^{2} R$ or V^{2} / R or $V I$

$$
\begin{aligned}
\text { ratio } & =\left[(1.2)^{2} \times 4\right] /\left[(1.5)^{2} \times 4\right] \\
& =0.64
\end{aligned}
$$

(c) the resistance (of a lamp) changes with V or I
V or I is greater in parallel circuit or circuit 2 or V or I is less in series circuit or circuit 1

B1

4
$\begin{array}{ll}\text { (a) lost volts/energy used within the cell/internal resistance } & \text { B1 } \\ \text { when cell supplies a current } & \text { B1 }\end{array}$
(b) (i) $E=I(R+r)$ C

$$
4.5=0.65(6.0+r)
$$

$$
r=0.92 \Omega
$$

(ii) $\begin{aligned} & I=0.65(\mathrm{~A}) \text { and } V=I R \quad \mathrm{C} 1\end{aligned}$
$V=0.65 \times 6=3.9 \mathrm{~V}$
A
[2]
(iii) $P=V^{2} / R$ or $P=I^{2} R$ and $P=I V$

$$
=(3.9)^{2} / 6=2.5 \mathrm{~W}
$$

A
(iv) efficiency $=$ power out/power in C1

$$
=I^{2} R / I^{2}(R+r)=R /(R+r)=6.0 /(6.0+0.92)=0.87
$$

(c) (circuit) resistance decreases
current increases
more heating effect A1

5 (a e.m.f. = total energy available (per unit charge)
some (of the available energy) is used/lost/wasted/given out in the internal resistance of the battery (hence p.d. available less than e.m.f.)
(b) (i) $V=I R$

$$
I=6.9 / 5.0=1.4(1.38) \mathrm{A}
$$

(ii) $r=$ lost volts / current C1

$$
=(9-6.9) / 1.38=1.5(2) \Omega
$$

(c) (i) $P=E I$ (not $P=V I$ if only this line given or 9 V not used in second line)

$$
=9 \times 1.38=12(12.4) \mathrm{W}
$$

(ii) efficiency = output power / total power

$$
=\text { = VI / EI = } 6.9 / 9 \text { or (9.52) / (12.4) = } 0.767 / 76.7 \%
$$

6 (a (i) $I_{1}=I_{2}+I_{3}$
B1
(ii) $I=V / R \quad$ or $I_{2}=12 / 10(=1.2 \mathrm{~A})$
$R=[1 / 6+1 / 10]^{-1}[$ total $R=3.75 \Omega]$ or $I_{3}=12 / 6 \quad(=2.0 \mathrm{~A})$ $I_{1}=12 / 3.75=3.2 \mathrm{~A} \quad$ or $I_{1}=1.2+2.0=3.2 \mathrm{~A}$

A1 [3]
(iii) power $=V I$ or $I^{2} R$ or V^{2} / R

> C1
$x=\frac{\text { power in wire }}{\text { power in series resistors }}=\frac{I_{2}^{2} R_{\mathrm{w}}}{I_{3}^{2} R_{\mathrm{s}}}$ or $\frac{V_{2}}{I_{3}}$ or $\frac{V^{2} / R_{\mathrm{w}}}{V^{2} / R_{\mathrm{s}}}$ $x=12 \times 1.2 / 12 \times 2.0=0.6(0)$ allow $3 / 5$ or $3: 5$
(b) p.d. BC: $12-12 \times 0.4=7.2(\mathrm{~V}) /$ p.d. $\mathrm{AC}=4.8(\mathrm{~V})$ p.d. $\mathrm{BD}: 12-12 \times 4 / 6=4.0(\mathrm{~V}) /$ p.d. $A D=8.0(\mathrm{~V})$ p.d. $=3.2 \mathrm{~V}$

A1
[3]

