Practical Circuits \& Kirchoff's

Law

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	D.C. Circuits
Sub Topic	Practical Circuits \& Kirchoff's Law
Paper Type	Theory
Booklet	Mark Scheme 4

1 (a (work $=$) force \times distance or force \times displacement or $(W=) F \times d$ units of work: $\mathrm{kgm} \mathrm{s}^{-2} \times \mathrm{m}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ A1
(b) (p.d. $=$) work (done) or energy (transformed) (from electrical to other forms) B1
(c) $R=V / I$

B1
units of $V: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{As}$ and units of I : A
or
$R=P / I^{2}$ [or $P=V I$ and $\left.V=I R\right]$
units of P : $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$ and units of I : A
or
$R=V^{2} / P$
units of $V: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / A s$ and units of $P: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
units of R : $\left(\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{A}^{2} \mathrm{~s}=\right) \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
A1 [3]

2 (a curved line showing decreasing gradient with temperature rise
(b) (i) (no energy lost in battery because) no/negligible internal resistance
(ii) $I=V / R$

$$
\begin{aligned}
& =8 / 15 \times 10^{3} \text { or } 1.6 / 3.0 \times 10^{3} \text { or } 2.4 / 4.5 \times 10^{3} \text { or } 12 / 22.5 \times 10^{3} \\
& =0.53 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

(iii) p.d. across $\mathrm{X}=12-8.0-3.0 \times 10^{3} \times 0.53 \times 10^{-3}(=2.4 \mathrm{~V})$
$R_{\mathrm{x}}=2.4 /\left(0.53 \times 10^{-3}\right)$
or
$R_{\text {tot }}=12 / 0.53 \times 10^{-3}\left(=22.5 \times 10^{3} \Omega\right)$
$R_{\mathrm{x}}=(22.5-15.0-3.0) \times 10^{3}$
$4.5(2) \times 10^{3} \Omega$
(iv) resistance decreases hence current (in circuit) is greater
p.d. across X and Y is greater hence p.d across Z decreas
or explanation in terms of potential divider:
R_{Z} decreases so $R_{\mathrm{Z}} /\left(R_{\mathrm{X}}+R_{\mathrm{Y}}+R_{\mathrm{Z}}\right)$ is less therefore p.d. across Z decreases

A
[2]

C

A1

C1

$$
\begin{aligned}
& A=\left[\pi \times\left(0.38 \times 10^{-3}\right)^{2}\right] / 4 \quad\left(=0.113 \times 10^{-6} \mathrm{~m}^{2}\right) \\
& R=\left(4.5 \times 10^{-7} \times 1.00\right) /\left(\left[\pi \times\left(0.38 \times 10^{-3}\right)^{2}\right] / 4\right)=4.0(3.97) \Omega
\end{aligned}
$$

(b) (i) $I=V / R$

$$
=2.0 / 5.0=0.4(0) \mathrm{A}
$$

(ii) p.d. across $\mathrm{BD}=4 \times 0.4=1.6 \mathrm{~V}$
(iii) p.d. across $\mathrm{BC}(\mathrm{l})=1.5(\mathrm{~V})$
$B C(l)=(1.5 / 1.6) \times 100=94(93.75) \mathrm{cm}$
(c) p.d. across wire not balancing e.m.f. of cell OR cell Y has current energy lost or lost volts due to internal resistance

4 (a e.m.f.: energy converted from chemical/other forms to electrical per unit charge
p.d.: energy converted from electrical to other forms per unit char
(b) (i) the p.d. across the lamp is less than 12 V or there are lost volts/power/energy in the battery/internal resistance
(ii) $R=V^{2} / P$ (or $V=R I$ and $P=V I$)

$$
\text { (II) } \begin{aligned}
\Omega & =144 / 48 \\
& =3.0 \Omega
\end{aligned}
$$

(iii) $I=E /\left(R_{T}+r\right)$

$$
=12 / 2.0
$$

(iv) power of each lamp $=I^{2} R$
$\begin{array}{lr}\text { (c) less resistance (in circuit)/more current } & \text { M1 } \\ \text { more lost volts/less p.d. across battery } & \text { A1 }\end{array}$

$$
=6.0 \mathrm{~A}
$$

$$
\begin{aligned}
& =(3.0)^{2} \times 3.0 \\
& =27 \mathrm{~W}
\end{aligned}
$$

5 (a (i) $I_{1}+I_{3}=I_{2}$
A1 [1
(ii) $E_{1}=I_{2} \frac{R_{2}}{2}+I_{1} \frac{R_{2}}{2}+I_{1} R_{1}+I_{1} r_{1}$
(iii) $E_{1}-E_{2}$
$=-I_{3} r_{2}+I_{1}\left(R_{1}+r_{1}+R_{2} / 2\right)$
(b) p.d. across BJ of wire changes / resistance of BJ changes there is a difference in p.d across wire and p.d. across cell E_{2}

B1
B1
B1
B1
[2]
[2]

> B1

B1
(ii) work done per unit charge (transferred)
(b) straight line through origin B1
resistance $=V / I$, with values for V and I shown M1 $=20 \Omega$
(using the gradient loses the last mark)
(c) $\quad 0.5 \mathrm{~A}$
(ii) either resistance of each resistor is 20Ω or total current $=0.8 \mathrm{~A}$ either combined resistance $=10 \Omega$ or $R=E / I=10 \Omega$
(d) (i) 10 V
(ii) power = EI

$$
\begin{equation*}
=10 \times 0.2=2.0 \mathrm{~W} \tag{2}
\end{equation*}
$$

A
C A1

A
C1
A
[2]
[1]

7 (a) (i) resistance is ratio V / I (at a point)
either gradient increases or I increases more rapidly than V
B1 [2]
(If states $R=$ reciprocal of gradient, then $0 / 2$ marks here)
(ii) current $=2.00 \mathrm{~mA} \quad$ C1
resistance $=2000 \Omega \quad$ A1
A1 [2]
(b) (straight line from origin M1
passing through ($6.0 \mathrm{~V}, 4.0 \mathrm{~mA}$) (allow $1 / 2$ square tolerance)
A1
[2]
(ii) individual currents are 0.75 mA and $1 / 33 \mathrm{~mA}$ C1
current in battery $=2.1 \mathrm{~mA}$ A1
(allow argument in terms of $P=I^{2} R$ or IV)
(c) same current in R and in C M1
p.d. across C is larger than that across M1
so since power $=$ VI, greater in C
(allow argument in terms of $P=I^{2} R$ or IV)
8 (a) (i) resistance $=V / I$ C1

$$
=6.0 /\left(40 \times 10^{-3}\right)
$$

$$
=150 \Omega \text {. }
$$

(no marks for use of gradient)
(ii) at 8.0 V , resistance $=8.0 /\left(50 \times 10^{-3}\right)=160 \Omega \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{C} 1$
change $=10 \Omega$... A1
(b) (i) straight line through origin...M1
passes through $I=40 \mathrm{~mA}, \mathrm{~V}=8.0 \mathrm{~V}$.. A 1

