Practical Circuits & Kirchoff's Law Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	D.C. Circuits
Sub Topic	Practical Circuits & Kirchoff's Law
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:		87 minute	87 minutes					
Score:		/72	/72					
Percentage:		/100						
A*	A	В	С	D	E	U		
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%		

1	(a	(work =) force \times distance or force \times displacement or (<i>W</i> =) <i>F</i> \times <i>d</i>	M1	
		units of work: $kg m s^{-2} \times m = kg m^2 s^{-2}$	A1	[2]
	(b)	(p.d. =) work (done) or energy (transformed) (from electrical to other forms) charge	B1	[1]
	(c)	R = V/I units of V: kg m ² s ⁻² /As and units of I: A	B1 C1	
		or $R = P/I^2$ [or $P = VI$ and $V = IR$] units of P : kg m ² s ⁻³ and units of I : A	(B1) (C1)	
		or $R = V^2/P$ units of V: kg m ² s ⁻² /As and units of P: kg m ² s ⁻³	(B1) (C1)	
		units of <i>R</i> : $(kgm^2 s^{-2}/A^2 s =) kgm^2 s^{-3} A^{-2}$	A1	[3]

2	(a	curved line showing decreasing gradient with temperature rise	M1	
		smooth line not touching temperature axis, not horizontal or vertical anywhere	A1	[2
	(b)	(i) (no energy lost in battery because) no/negligible internal resistance	B1	[1

(ii)	I = V/R		
	= $8/15 \times 10^3$ or $1.6/3.0 \times 10^3$ or $2.4/4.5 \times 10^3$ or $12/22.5 \times 10^3$	C1	
	$= 0.53 \times 10^{-3} A$	А	[2]
(iii)	p.d. across X = $12 - 8.0 - 3.0 \times 10^3 \times 0.53 \times 10^{-3}$ (= 2.4 V)		
	$R_{\rm X} = 2.4/(0.53 \times 10^{-3})$	С	
	or $R_{\text{tot}} = 12/0.53 \times 10^{-3} (= 22.5 \times 10^{3} \Omega)$ $R_{\text{X}} = (22.5 - 15.0 - 3.0) \times 10^{3}$	(C1) (C1)	
	$4.5(2) imes 10^3 \Omega$	A1	[3]
(iv)	resistance decreases hence current (in circuit) is greater	M1	
	p.d. across X and Y is greater hence p.d across Z decreas	A1	
	or explanation in terms of potential divider: R_z decreases so $R_z/(R_x + R_y + R_z)$ is less therefore p.d. across Z decreases	(M1) (A1)	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —

3	$a R = \rho l / A$	C1
	$A = [\pi \times (0.38 \times 10^{-3})^2] / 4 (= 0.113 \times 10^{-6} \text{ m}^2)$	С
	$R = (4.5 \times 10^{-7} \times 1.00) / ([\pi \times (0.38 \times 10^{-3})^2] / 4) = 4.0 (3.97) \Omega$	M1 [3]
	(b) (i) $I = V/R$ = 2.0 / 5.0 = 0.4(0)A	C1 A [2]
	(ii) p.d. across BD = 4 × 0.4 = 1.6 V	A [1]
	(iii) p.d. across BC $(l) = 1.5 (V)$	
	BC $(l) = (1.5 / 1.6) \times 100 = 94 (93.75) \text{ cm}$	[2]
(c	p.d. across wire not balancing e.m.f. of cell OR cell Y has current energy lost or lost volts due to internal resistance	B1 B1 [2]

4	(a	e.m.f.: energy converted from chemical/other forms to electrical per unit charge p.d.: energy converted from electrical to other forms per unit char	B1 B1	[2]
	(b)	(i) the p.d. across the lamp is <u>less than</u> 12V or there are lost volts/power/energy in the battery/internal resistance	B1	[1]
		(ii) $R = V^2/P$ (or $V = RI$ and $P = VI$)	С	
		= $144/48$ = 3.0 Ω	A1	[2]
		(iii) $I = E/(R_T + r)$ = 12/2.0	С	
		= 6.0 A	A	1 [2]
		(iv) power of each lamp = $I^2 R$ = $(3.0)^2 \times 3.0$ = 27 W	C A	
	(c)	less resistance (in circuit)/more current more lost volts/less p.d. across battery	M1 A1	[2]

5	(a	(i)	$I_1 + I_3 = I_2$		A1	[1
		(ii)	$E_1 = I_2 \frac{R_2}{2} + I_1 \frac{R_2}{2} + I_1 R_1 + I_1 r_1$		A1	[1
		(iii)	$E_1 - E_2 = -I_3 r_2 + I_1 (R_1 + r_1 + R_2 / 2)$		B1 B1	[2]
	(b		d. across <u>BJ</u> of wire changes / resistance of <u>BJ</u> changes ere is a difference in p.d across wire and p.d. across cell E_2		B1 B1	[2]
6	(a	(i)	movement/flow of charged particles	B1		[1]
		(ii)	work done per unit charge (transferred)	B1		[1]
	(b)	resi = 2	hight line through origin istance = V/I , with values for V and I shown 0 Ω ing the gradient loses the last mark)	B1 M1 A0		[2]
	(c)	(0.5A	A		[1]
		(ii)	either resistance of each resistor is 20Ω or total current = 0.8 A either combined resistance = 10Ω or $R = E/I = 10 \Omega$	C A1		[2]
	(d)	(i)	10 V	А		[1]
		(ii)	power = <i>EI</i> = 10 × 0.2 = 2.0 W	C1 A		[2]

7 (a) (i)	resista	nce is ratio <i>V/I</i> (at a point)	B1	
		either	gradient increases or <i>I</i> increases more rapidly than V	B1	[2]
	 (If states R = reciprocal of gradient, then 0/2 marks here) (ii) current = 2.00 mA resistance = 2 000 Ω 				
					[2]
(b) (straigh	t line from origin	M1	
		passin	g through (6.0 V, 4.0 mA) (allow ½ square tolerance)	A 1	[2]
	(ii)	individ	ual currents are 0.75 mA and 1/33 mA	C1	
		curren	t in battery = 2.1 mA	A1	[2]
		(allow	argument in terms of $P = I^2 R$ or IV)		
(c) sar	ne curr	ent in R and in C	M1	
p.d. across C is larger than that across so since power = <i>VI</i> , greater in C					
					[3]
		(allow	r argument in terms of $P = I^2 R$ or IV)		
		<i>—</i>		~ (
8 (a)	(i)	resistance = V/I = $6.0/(40 \times 10^{-3})$ = 150Ω (no marks for use of gradient)	C1 A1	
		(ii)	at 8.0 V, resistance = 8.0/(50 x 10^{-3}) = 160 Ω change = 10 Ω		[4]
(b)	(i)	straight line through origin passes through <i>I</i> = 40 mA, V = 8.0V		
		(ii)	current in both must be 40 mA e.m.f. = 8.0 + 6.0 = 14.0 V		[4]