Potential Dividers
 Mark Scheme

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	D.C. Circuits
Sub Topic	Potential Dividers
Paper Type	Theory
Booklet	Mark Scheme

Time Allowed:	54 minutes						
Score:	/45						
Percentage:	/100						
A*	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

(a there are no lost volts/energy lost in the battery
or there are no lost volts/energy lost in the internal resistance
(b) the current/ I decreases (as R increases)
p.d. decreases (as R increases)
or
the parallel resistance (of X and R) increases M1
p.d. across parallel resistors increases, so p.d. (across Y) decreases
(c) (i) current $=2.4(\mathrm{~A})$
p.d. across $A B=24-2.4 \times 6=9.6 \mathrm{~V}$
or
total resistance $=10 \Omega \quad(=24 \mathrm{~V} / 2.4 \mathrm{~A})$
(parallel resistance $=4 \Omega), \quad$ p.d. $=24 \times(4 / 10)=9.6 \mathrm{~V}$
(ii) $R(\mathrm{AB})=9.6 / 2.4=4.0 \Omega$
$1 / 6+1 / X=1 / 4 \quad$ [must correctly substitute for $R] \quad$ C1
$X=12 \Omega$
or
$I_{\mathrm{R}}=9.6 / 6.0=1.6(\mathrm{~A})$
$I_{\mathrm{X}}=2.4-1.6=0.8(\mathrm{~A})$
$X(=9.6 / 0.8)=12 \Omega$
(iii) power $=V I$ or $E I$ or V^{2} / R or E^{2} / R or $I^{2} R$

$$
=24 \times 2.4 \text { or }(24)^{2} / 10 \text { or }(2.4)^{2} \times 10
$$

$$
=57.6 \mathrm{~W} \quad \text { (allow } 2 \text { or more s.f.) }
$$

(d) power decreases
e.m.f. constant or power $=24 \times$ current, and current decreases ore.m.f. constant or power $=24^{2} /$ resistance, and resistance increases

C1

C1

A1

M

M1
r.

A1
(i) $I_{1}+I_{3}=I_{2}$

A1 [1
(ii) $\quad E_{1}=I_{2} \frac{R_{2}}{2}+I_{1} \frac{R_{2}}{2}+I_{1} R_{1}+I_{1} r_{1}$

A1 [1
(iii) $E_{1}-E_{2}$

B1
$=-I_{3} r_{2}+I_{1}\left(R_{1}+r_{1}+R_{2} / 2\right)$
B1
(b) p.d. across BJ of wire changes / resistance of BJ changes

B1 there is a difference in p.d across wire and p.d. across cell E_{2}

B1

3 (a
(i) $I=12 /(6+12)$
minimum current $=0.67 \mathrm{~A}$
(ii) correct start and finish points M1 correct shape for curve with decreasing gradient
(b) maximum current $=2.0 \mathrm{~A}$

A1 minimum current $=0$
(c) (i) smooth curve starting at $(0,0)$ with decreasing gradient

M1
end section not horizontal
(ii) full range of current / p.d. possible
or currents / p.d. down to zero
or brightness ranging from off to full brightness
B1
A1

4 (a) either $P \propto V^{2}$ or $P=V^{2} / R$

$$
\begin{aligned}
& \text { reduction }=\left(230^{2}-220^{2}\right) / 230^{2} \\
& =8.5 \%
\end{aligned}
$$

(b) (i) zero A1
(ii) $0.3(0) \mathrm{A}$ A1
B1
(c) (i) correct plots to within $\pm 1 \mathrm{~mm}$
(ii) reasonable line/curve through points giving current as 0.12 A allow $\pm 0.005 A$) B1
(iii) $V=I R$
$V=0.12 \times 5.0$
$=0.6(0) \mathrm{V}$
A1
(d) circuit acts as a potential divider/current divides/current in AC not the same as current in BC
resistance between A and C not equal to resistance between C and $B \ldots \ldots . \quad B 1$ or current in wire $A C \times R$ is not equal to current in wire $B C \times R$ B1 any 2 statements

5 (a either $V=I P$
current in circuit $=E /(P+Q)$
hence $V=E P /(P+Q)$
A0
or current is the same throughout the circuit
$V / P=E /(P+Q)$
hence $V=E P /(P+Q)$
(b) (i) (as temperature rises), resistance of (thermistor) decreases either resistance of parallel combination decreases or p.d. across $5 \mathrm{k} \Omega$ resistor / thermistor decreases (M1) (A1) (A0
(ii) if R is the resistance of the parallel combination, either $3.6=(2 \times 6) /(2+R)$ or current in $2 \mathrm{k} \Omega$ resistor $=1.8 \mathrm{~mA}$ $R=1.33 \mathrm{k} \Omega \quad$ current in $5 \mathrm{k} \Omega$ resistor $=0.48 \mathrm{~mA}$ $\frac{1}{1.33}=\frac{1}{5}+\frac{1}{T}$
$T=1.82 \mathrm{k} \Omega$
current in thermistor $=1.32 \mathrm{~mA}$

