Potential Dividers Mark Scheme

Level	International A Level	
Subject	Physics	
Exam Board	CIE	
Торіс	D.C. Circuits	
Sub Topic	Potential Dividers	
Paper Type	Theory	
Booklet	Mark Scheme	

Time Allowed:	54 minutes				
Score:	/45				
Percentage:	/100				

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	(a there are no lost volts/energy lost in the battery or there are no lost volts/energy lost in the internal resistance								
(b)	the ci p.d. c	current/ <i>I</i> decreases (as <i>R</i> increases) . decreases (as <i>R</i> increases)							
	or								
	the parallel resistance (of X and R) increases p.d. across parallel resistors increases, so p.d. (across Y) decreases								
(0	;) (i)	current = 2.4 (A) p.d. across AB = 24 – 2.4 × 6 = 9.6 V	C1 M						
		or							
		total resistance = 10Ω (= $24 V/2.4 A$) (parallel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 V$	M1	[2]					
	(ii)	$R (AB) = 9.6/2.4 = 4.0\Omega$ 1/6 + 1/X = 1/4 [must correctly substitute for R] X = 12\Omega	C1 C1 A1						
		or							
		$I_{\rm R} = 9.6/6.0 = 1.6$ (A) $I_{\rm X} = 2.4 - 1.6 = 0.8$ (A) $X (= 9.6/0.8) = 12 \Omega$	(C1) (C1) (A1)	[3]					
	(iii)	power = VI or EI or V^2/R or E^2/R or I^2R	C1						
		= 24 × 2.4 or (24)²/10 or (2.4)² × 10 = 57.6W (allow 2 or more s.f.)	A1	[2]					
(d) pc	wer decreases	M0						
	e.m or <u>e</u>	.f. constant or power = $24 \times \text{current}$, and current decreases .m.f. constant or power = $24^2/\text{resistance}$, and resistance increases	A1	[1]					

1

(a (i)	$I_1 + I_3 = I_2$	A1	[1
(ii)	$E_1 = I_2 \frac{R_2}{2} + I_1 \frac{R_2}{2} + I_1 R_1 + I_1 r_1$	A1	[1
(iii)	$E_1 - E_2 = -I_3 r_2 + I_1 (R_1 + r_1 + R_2 / 2)$	B1 B1	[2]
(b) p.c the	I. across <u>BJ</u> of wire changes / resistance of <u>BJ</u> changes are is a difference in p.d across wire and p.d. across cell E_2	B1 B1	[2]
(a (i)	<i>I</i> = 12 / (6 + 12) minimum current = 0.67 A	C1 A1	[2]
(ii)	correct start and finish points correct shape for curve with decreasing gradient	M1 A1	[2]
(b) ma mii	nximum current = 2.0 A nimum current = 0	A1 A1	[2]
(c) (i)	smooth curve starting at (0,0) with decreasing gradient end section not horizontal	M1 A1	[2]
(ii)	full range of current / p.d. possible or currents / p.d. down to zero or brightness ranging from off to full brightness	B1	[1]
	(a (i) (ii) (iii) (b) p.c the (a (i) (i) (b) ma min (c) (i) (ii)	 (a (i) I₁ + I₃ = I₂ (ii) E₁ = I₂R₂ + I₁R₂ + I₁R₁ + I₁r₁ (iii) E₁ - E₂ = -I₃r₂ + I₁ (R₁ + r₁ + R₂ / 2) (b) p.d. across BJ of wire changes / resistance of BJ changes there is a difference in p.d across wire and p.d. across cell E₂ (a (i) I = 12 / (6 + 12) minimum current = 0.67 A (ii) correct start and finish points correct shape for curve with decreasing gradient (b) maximum current = 2.0 A minimum current = 0 (c) (i) smooth curve starting at (0,0) with decreasing gradient end section not horizontal (ii) full range of current / p.d. possible or currents / p.d. down to zero or brightness ranging from off to full brightness 	(a (i) $I_1 + I_3 = I_2$ A1(ii) $E_1 = I_2 \frac{R_2}{2} + I_1 \frac{R_2}{2} + I_1 R_1 + I_1 r_1$ A1(iii) $E_1 - E_2$ B1 $= -I_3 r_2 + I_1 (R_1 + r_1 + R_2 / 2)$ B1(b) p.d. across <u>BJ</u> of wire changes / resistance of <u>BJ</u> changes there is a difference in p.d across wire and p.d. across cell E_2 B1(a (i) $I = 12 / (6 + 12)$ minimum current = 0.67 AC1 A1(ii) correct start and finish points correct shape for curve with decreasing gradientM1 A1(b) maximum current = 2.0 A minimum current = 0A1 A1(c) (i) smooth curve starting at (0,0) with decreasing gradient end section not horizontalM1 A1(ii) full range of current / p.d. possible or currents / p.d. down to zero or brightness ranging from off to full brightnessB1

<u>CHEMISTRY ONLINE</u> — TUITION —

4	(a)	<i>eith</i> red	ner P a luction	$\propto V^2 \text{ or } P =$ = (230 ² -) = 8.5 %	: V ² /R 220 ²)/230 ²					 A1	I	[2]
	(b)	(i)	zero							A1	1	[1]
		(ii)	0.3(0))A						A1	I	[1]
	(c)	(i)	corre	ect plots to	within ± 1 mm					B1	I	[1]
		(ii)	<u>reas</u> allow	onable line / ± 0.005A)	<u>curve</u> through	points g	jiving currer	nt as 0	.12A	B1	1	[1]
		(iii)	V = 1 V = 0 = 0	IR 0.12 × 5.0 0.6(0)V		·····	-			 A1	1	[2]
	(d)	circ cur res or c any	cuit ac rent ir istanc curren / 2 sta	ts as a pote BC e between t in wire AC tements	ential divider/co A and C not e C × R is not eq	urrent di qual to r ual to cu	vides/currer esistance b irrent in wire	etweer BC ×	C not the sam	e as B [^] B [^]	1	[2]
	5	(a	eithei or	r $V = IP$ current ir hence V current is V / P = E hence V	n circuit = E / (/ = EP / (P + Q) = the same thro - / (P + Q) = EP / (P + Q)	□ + Q) bughout	the circuit		(M1) (A1) (A0		B1 B1 A0	[2]
		(b) (i) (as temperature rises), resistance of (thermistor) decreases either resistance of parallel combination decreases or p.d. across 5 k Ω resistor / thermistor decreases p.d. across 2000 Ω resistor / voltmeter reading increases								M1 M1 A1	[3]	
			(ii)	if R is the r either 3.6 R = 1.33 ks	esistance of th = $(2 \times 6) / (2 + $	ie parall R) or	el combinati current in 2 current in 5	ion, 2 kΩ re 5 kΩ re	esistor = 1.8 m esistor = 0.48	A mA	C1 C1	
				$\frac{1}{1.33} = \frac{1}{5}$	$+\frac{1}{T}$		current in t	hermis	stor = 1.32 mA	L.	C1	
				T = 1.82 kg	2		T = 2.4 / 1.	32 = 1	.82 kΩ		A1	[4]