Electronics

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electronics
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 69 minutes

Score: /57

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 An operational amplifier (op-amp) is used in the comparator circuit of Fig. 10.1.

Fig. 10.1

(a) (i) Show that the potential at the inverting input of the op-amp is +1.0 V.

[1]

(ii) Explain why the potential difference across resistor R is + 5V when $V_{\rm IN}$ is greater than 1.0 V and is zero when $V_{\rm IN}$ is less than 1.0 V.

V _{IN} > 1.0 V:	
V _{IN} < 1.0 V:	
	 [4]

(b) The variation with time t of the input voltage $V_{\rm IN}$ is shown in Fig. 10.2.

Fig. 10.2

- (i) On the axes of Fig. 10.2, draw the variation with time t of the output potential $V_{\rm OUT}$. [2]
- (ii) Suggest a use for this type of circuit.

		F41
 	 	[1]

2 (a) An ideal operational amplifier (op-amp) has infinite open-loop gain and infinite input resistance

(impedance).	
State three further properties of an idea	op-amp.
1	
2	
3	
	[3]

(b) The circuit of Fig. 10.1 is used to detect changes in temperature.

Fig. 10.1

The voltmeter has infinite resistance.

The variation with temperature θ of the resistance R of the thermistor is shown in Fig. 10.2.

Fig. 10.2

(i) When the thermistor is at a temperature of $1.0\,^{\circ}$ C, the voltmeter reads $+1.0\,^{\circ}$ V. Show that, for the thermistor at $1.0\,^{\circ}$ C, the potential at A is $-0.20\,^{\circ}$ V.

[4]

(ii) The potential at A remains at -0.20 V.

Determine the voltmeter reading for a thermistor temperature of 15 °C.

(c)	The voltmeter	reading for a	thermistor	temperature	of 29°C is	s 0.35 V.
-----	---------------	---------------	------------	-------------	------------	-----------

(i)	Assuming	a linear	change	of voltmeter	reading w	ith change	of	temperature	over	the
	range 1°C	to 29°C	, calculat	e the voltmet	er reading	at 15°C.				

	voltmeter reading =V [1]
(ii)	Suggest why your answers in (b)(ii) and (c)(i) are not the same.
	[1]

3 A simplified block diagram of a mobile phone handset is shown in Fig. 13.1.

Fig. 13.1

State the purpose of

(a)	the switch,		
		CITTOIT	
			[2]
(b)	the tuning circuit.		
Dr. Asl	her Rana	www.chemistryonlinetuition.com	asherrana @chemistryonlinetuition.com

4 An electronic sensor may be represented by the block diagram of Fig. 10.1.

Fig. 10.1

- (a) State suitable sensing devices, one in each case, for the detection of
 - (i) change of temperature,

.....[1]

(ii) pressure changes in a sound wave.

.....[1]

(b) The ideal operational amplifier (op-amp) shown in Fig. 10.2 is to be used as a processing unit.

Fig. 10.2

(i)	State the value of the output potential $V_{\rm OUT}$ for an input potential $V_{\rm IN}$ of +0.5 V. Explayour answer.	ain

(ii) A sensing device produces a variable potential $V_{\rm IN}$. The variation with time t of $V_{\rm IN}$ is shown in Fig. 10.3.

Fig. 10.3

On the axes of Fig. 10.3, sketch the variation with time t of the output potential $V_{\rm OUT}$. [3]

5 (a) A circuit incorporating an ideal operational amplifier (op-amp) is shown in Fig. 11.1.

Fig. 11.1

(ı)	State the name of this circuit.	

				 [1]
(ii)	Explain why	the point P is referred	d to as a <i>virtual earth</i> .	

(b) The circuit of Fig. 11.1 is modified, as shown in Fig. 11.2.

Fig. 11.2

The voltmeter has infinite resistance and its full-scale deflection is 1.0 V.

The input potential to the circuit is $V_{\rm IN}$. The switch position may be changed in order to have different values of resistance in the circuit.

The input potential $V_{\rm IN}$ and the switch position are varied. For each switch position, the reading of the voltmeter is 1.0 V. Complete Fig. 11.3 for the switch positions shown.

switch position	V _{IN} /mV	resistance		
А	10	R _A =		
В	100	R _B =		
С		$R_{\rm C} = 1.0 \mathrm{k}\Omega$		

Fig. 11.3

[3] (ii) By reference to your answers in (i), suggest a use for the circuit of Fig. 11.2.

6	(a)	State the function	n of a comparator circuit incorporating an operational amplifier (op-amp).				
							[3

(b) An ideal op-amp is incorporated into the circuit of Fig. 10.1.

Fig. 10.1

- (i) On Fig. 10.1, draw a circle around the part of the circuit that is being used as an output device. [1]
- (ii) Show that the potential at the non-inverting input of the op-amp is 1.0 V.

(iii) The variation with time t of the potential $V_{\rm IN}$ at the inverting input of the op-amp is shown in Fig. 10.2.

Fig. 10.2

- **1.** On the axes of Fig. 10.2, draw the variation with time *t* of the output potential of the op-amp. [3]
- 2. State whether each diode is emitting light or is not emitting light at time t_1 and at time t_2 .

At time t_1 , diode R will	and diode G will
At time t_2 , diode R will	and diode G will[2]
	[2]

7 (a) State three properties of an ideal operational amplifier (op-amp).

.

2.

3.[3]

(b) An amplifier circuit is shown in Fig. 9.1.

Fig. S

(i) Calculate the gain of the amplifier circuit.

CHEMISTRY ONLINE

gain =[2]

(ii) The variation with time t of the input potential V_{IN} is shown in Fig. 9.2.

Fig. 9.2

On the axes of Fig. 9.2, show the variation with time t of the output potential $V_{\rm OUT}$. [3]