Electronics

Question paper 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electronics
Sub Topic	
Paper Type	Theory
Booklet	Question paper 4

Time Allowed: 63 minutes

Score: /52

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A block diagram for an electronic sensor is shown in Fig. 9.1.

Fig. 9.1

(a) Complete Fig. 9.1 by labelling the remaining boxes.

[2]

- (b) A device is to be built that will emit a red light when its input is at +2 V. When the input is at -2 V, the light emitted is to be green.
 - (i) On Fig. 9.2, draw a circuit diagram of the device.

[2]

Fig. 9.2

(ii) Explain briefly the action of this device.

2 (a) Fig. 8.1 shows a circuit incorporating an ideal operational amplifier (op-amp).

Fig. 8.1

The voltages applied to the inverting and the non-inverting inputs are V_1 and V_2 respectively.

State the value of the output voltage V_{OUT} when

(i) $V_1 > V_2$,

(ii) $V_1 < V_2$.

(b) The circuit of Fig. 8.2 is used to monitor the input voltage V_{IN} .

Fig. 8.2

At point A, a potential of 5.0V is maintained. At point B, a potential of 3.0V is maintained.

Complete Fig. 8.3 by indicating with a tick (\checkmark) the light-emitting diodes (LEDs) that are conducting for the input voltages V_{IN} shown. Also, mark with a cross (\checkmark) those LEDs that are not conducting.

V _{IN} / V	red LED	green LED
+2.0	ISTRY	ONL
+4.0	TTTTT	ONT
+6.0		

[3]

Fig. 8.3

- (c) The input voltage $V_{\rm IN}$ in (b) is provided by a sensor circuit.
 - (i) Complete Fig. 8.4 to show a sensor circuit that will provide a voltage output that increases as the temperature of the sensor decreases. Show clearly the output connections from the circuit. [2]

Fig. 8.4

(ii) Explain the operation of the sensor circuit.

 ,	
	13

3	(a)	State three characteristics of a	ın ideal operational	amplifier (op-amp).
---	-----	----------------------------------	----------------------	---------------------

1.	 	 	

(b) An amplifier circuit for a microphone is shown in Fig. 8.1.

Fig. 8.1

(i) Name the type of feedback used with this op-amp.

- (ii) The output potential difference $V_{\rm OUT}$ is 5.8V for a potential difference across the resistor R of 69 mV. Calculate
 - 1. the gain of the amplifier circuit,

2. the resistance of resistor X.

	resistance = Ω [2]
(iii)	State one effect on the amplifier output of reducing the resistance of resistor X.
	[1]

4 (a) The strain in a beam is to be monitored using a strain gauge. The strain gauge is included in the potential divider circuit shown in Fig. 9.1.

The strain gauge has a resistance of $120.0\,\Omega$ when it is not strained. The resistance increases to $121.5\,\Omega$ when the strain is ε .

Calculate the potential difference between points A and B on Fig. 9.1 when the strain in the gauge is ε .

(b) An inverting amplifier, incorporating an operational amplifier (op-amp), uses a high-resistance voltmeter to display the output. A partially completed circuit for the amplifier is shown in Fig. 9.2.

Fig. 9.2

The voltmeter is to indicate a full-scale deflection of +6.0 V for an input potential V_{IN} of 0.15 V.

- (i) On Fig. 9.2,
 - complete the circuit for the inverting amplifier,
- [1]

[2]

[2]

- 2. mark, with the letter P, the positive terminal of the voltmeter.
- (ii) Suggest appropriate values for the resistors you have shown in Fig. 9.2. Label the resistors in Fig. 9.2 with these values.

5 (a) The resistance of a light-dependent resistor (LDR) is approximately 500 Ω in daylight. Suggest an approximate value for the resistance of the LDR in darkness.

resistance = Ω [1]

(b) An electronic light-meter is used to warn when light intensity becomes low. A light-dependent resistor is connected into the circuit of Fig. 9.1.

Fig. 9.1

The operational amplifier (op-amp) is ideal.

The resistors R are to ensure that the light-emitting diodes (LEDs) do not over-heat.

- (i) On Fig. 9.1, mark the polarity of the point P for the red LED to be emitting light. [1]
- (ii) The LDR is in daylight and has a resistance of $500\,\Omega$. State and explain which diode, red or green, will be emitting light.

.....[3]

(iii) The intensity of the light decreases and the LDR is in darkness.

State and explain the effect on the LEDs of this change in intensity.

[2]

6 (a) Describe the structure of a metal wire strain gauge. You may draw a diagram if you wish.

ĮO.	
[ა	

(b) A strain gauge S is connected into the circuit of Fig. 9.1.

Fig. 9.1

The operational amplifier (op-amp) is ideal.

The output potential $V_{\rm OUT}$ of the circuit is given by the expression

$$V_{\text{OUT}} = \frac{R_{\text{F}}}{R} \times (V_2 - V_1).$$

(i) State the name given to the ratio $\frac{R_{\rm F}}{R}$.

......[1]

(ii) The strain gauge S has resistance 125 Ω when not under strain. Calculate the magnitude of V_1 such that, when the strain gauge S is not strained, the output V_{OUT} is zero.

(iii) In a particular test, the resistance of S increases to 128 Ω . V_1 is unchanged. The ratio $\frac{R_{\rm F}}{R}$ is 12.

Calculate the magnitude of $V_{\rm OUT}$.

$$V_{OUT} = \dots V [2]$$

- 7 (a) State the name of an electrical sensing device that will respond to changes in
 - (i) length,

11
 11'

(ii) pressure.

г.	7
17	

(b) A relay is sometimes used as the output of a sensing circuit.

The output of a particular sensing circuit is either +2V or -2V.

On Fig. 10.1, draw symbols for a relay and any other necessary component so that the external circuit is switched on only when the output from the sensing circuit is +2V.

Fig. 10.1

[4]