Electronics

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electronics
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	69 minutes				
Score:	/57				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) (i) (potential $=) 1.2 /(1.2+4.2) \times 4.5=+1.0 \mathrm{~V}$
(ii) (for $V_{\mathbb{I N}}>1.0 \mathrm{~V}$) $\mathrm{V}^{+}>\mathrm{V}^{-} \quad$ B1 output (of op-amp) is +5 V or positive M1 diode conducts giving +5 V across R or $\mathrm{V}_{\text {out }}$ is +5 V
(for $V_{\mathbb{I N}}<1.0 \mathrm{~V}$) output of op-amp $-5 \mathrm{~V} /$ negative so diode does not conduct, giving $\mathrm{V}_{\text {out }}=0$ or 0 V across R
(b) (square wave with maximum value +5 V and minimum value 0 vertical sides in correct positions and correct phase
(ii) re-shaping (digital) signals/regenerator (amplifier)
(a) e.g. zero output resistance/impedance
infinite bandwidth
infinite slew rate
1 mark each, max. 3
(b) (i) at $1.0^{\circ} \mathrm{C}$, thermistor resistance is $3.7 \mathrm{k} \Omega$

B1
amplifier gain $=-R / 740=-3700 / 740$ (negative sign essential) C1 $=-5.0$ C1
potential $=1.0 /-5.0=-0.20 \mathrm{~V}$
A1
C1
(ii) at $15^{\circ} \mathrm{C}, R=2.15 \mathrm{k} \Omega$ (allow $\pm 0.05 \mathrm{k} \Omega$)
reading $=(2150 / 740) \times 0.2$
$=0.58 \mathrm{~V}(0.59 \mathrm{~V} \rightarrow 0.57 \mathrm{~V})$
A1
(c) (i) 0.68 V

A1
(ii) resistance (of thermistor) does not change linearly with temperature

B1

3 (a) either for transmission and reception of signal or switching between transmitted and received signals M1 either so that one aerial may be used or so that transmission and reception can occur in quick succession
(b) gives large signal for one (input) frequency M1 (and) rejects/very small signal for all other frequencies A1

4 (a) (i) thermistor/thermocouple
(ii) quartz crystal/piezoelectric crystal or transducer/microphone
(b) $\left(V_{\text {OUT }}=-5 \mathrm{~V}\right.$

A
B1
inverting input is positive or V_{-}is positive or $\mathrm{V}_{-}>\mathrm{V}_{+}$so $V_{\text {OUT }}$ is negative op-amp has very large/infinite gain and so saturates
(ii) sketch: $V_{\text {OUT }}$ switches from $(+)$ to $(-)$ when $V_{\text {IN }}$ is zero B1
$V_{\text {out }}$ is +5 V or -5 V M
$V_{\text {OUT }}$ is negative when $V_{\text {IN }}$ is positive (or v.v.)
A

[3]

5 (a) (i) inverting amplifier
$\begin{array}{ll}\text { (ii) gain is very large/infinite } & \mathrm{B} 1 \\ V^{+} \text {is earthed }\end{array}$
V^{+}is earthed/zero
B1
for amplifier not to saturate, P must be (almost) earth/zero
(b) $\left(R_{\mathrm{A}}=100 \mathrm{k} \Omega\right.$

A1
$R_{\mathrm{B}}=10 \mathrm{k} \Omega$
A1
$V_{\text {IN }}=1000 \mathrm{mV}$ A1
(ii) variable range meter

B1

6 (a) compares the potentials/voltages at the (inverting and non-inverting) inputs either output (potential) dependent on which input is the larger or $\quad V^{+}>V^{-}$, then $V_{\text {OUt }}$ is positive B1 states the other condition B1

> [3]
(b) (i) ring drawn around both the LEDs (and series resistors)

B1 [1]
(ii) $\quad V^{-}=(1.5 \times 2.4) /(1.2+2.4)=1.0 \mathrm{~V}$
(allow $1.5 \times 2.4 / 3.6=1.0 \mathrm{~V}$)
(iii) 1. $V_{\text {OUt }}$ switches at +1.0 V
maximum $V_{\text {OUT }}$ is 5.0 V
when curve is above $+1.0 \mathrm{~V}, V_{\text {OUt }}$ is negative (or v.v.)
2. at time t_{1}, diode R is emitting light, diode G is not emitting

B1
at time t_{2}, diode R is not emitting, diode G is emitting B1 (must be consistent with graph line. If no graph line then 0/2)
(a e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate (1 each, max. 3)
(b) (i) gain $=1+(10.8 / 1.2)$

$$
=10
$$ A1

(ii) graph: straight line from $(0,0)$ towards $V_{\text {IN }}=1.0 \mathrm{~V}, V_{\text {OUT }}=10 \mathrm{~V}$ horizontal line at $V_{\text {OUt }}=9.0 \mathrm{~V}$ to $V_{\text {IN }}=2.0 \mathrm{~V}$ B1 correct $+9.0 \mathrm{~V} \rightarrow-9.0 \mathrm{~V}$ (and correct shape to $V_{\mathrm{IN}}=0$) B1

