Electronics Mark Scheme 1

Level			International A I	_evel	
Subject			Physics		
Exam Board			CIE		
Торіс			Electronics		
Sub Topic					
Paper Type			Theory		
Booklet			Mark Scheme 1		
Time Allowed: Score:		69 minutes /57			
Score: Percentage:	CHE	/57 /100	TRY		E
Score:	CHE B	/57 /100	TRY (E U

	1 ((a)	(i)	(potential =) 1.2/(1.2 + 4.2) × 4.5 = +1.0 V	А	[1]
		(i	i)	(for $V_{IN} > 1.0 \text{ V}$) V ⁺ > V ⁻ output (of op-amp) is +5V or positive diode conducts giving +5V across R or V _{out} is +5V	B1 M1 A	
				(for V_{IN} < 1.0 V) output of op-amp –5 V/negative so diode does not conduct, giving V_{out} = 0 or 0 V across R	A1	[4]
	(b)) (square wave with maximum value +5 V and minimum value 0 vertical sides in correct positions and correct phase	M1 A1	[2]
		(i	i)	re-shaping (digital) signals/regenerator (amplifier)	B1	[1]
2	(a)	i i	nfir nfir	zero output resistance/impedance hite bandwidth hite slew rate bark each, max. 3	В3	[3]
	(k	o) ((i)	at 1.0 °C, thermistor resistance is $3.7 \text{ k}\Omega$ amplifier gain = $-R/740 = -3700/740$ (negative sign essential) = -5.0	B1 C1 C1	
				potential = 1.0/-5.0 = -0.20 V	A1	[4]
		(i	ii)	at 15°C, <i>R</i> = 2.15 kΩ (<i>allow ±0.05 kΩ</i>)	C1	
				reading = (2150/740) × 0.2 = 0.58 V (0.59 V → 0.57 V)	A1	[2]
	(0	c) ((i)	0.68V	A1	[1]
		(i	ii)	resistance (of thermistor) does not change linearly with temperature	B1	[1]

3		<i>ther</i> for transmission and reception of signal or switching between transmitted and received signals either so that one aerial may be used	M1	
		or so that transmission and reception can occur in quick succession	A1	[2]
		gives large signal for one (input) frequency (and) rejects / very small signal for all other frequencies	M1 A1	[2]
4	(a) (i) thermistor/thermocouple		[1]
-		(ii) quartz crystal/piezoelectric crystal <i>or</i> transducer/microphone		[1]
				נין
	(b)	($V_{OUT} = -5V$ inverting input is positive or V_ is positive or V_ > V_ so V_{OUT} is negative op-amp has very large/infinite gain and so saturates	A B1 B1	[3]
		 (ii) sketch: V_{OUT} switches from (+) to (–) when V_{IN} is zero V_{OUT} is +5 V or –5 V V_{OUT} is negative when V_{IN} is positive (<i>or v.v.</i>) 	B1 M A	[3]
5	(a) (i) inverting amplifier	B1	[1]
	(ii) gain is <u>very</u> large/infinite V⁺ is earthed/zero for amplifier not to saturate, P must be (almost) earth/zero 	B1 B1 B1	[3]
	(b)	($R_{\rm A} = 100 \ {\rm k}\Omega$ $R_{\rm B} = 10 \ {\rm k}\Omega$ $V_{\rm IN} = 1000 \ {\rm mV}$	A1 A1 A1	[3]
	(ii) variable range meter	B1	[1]

6 (a) compares the potentials/voltages at the (inverting and non-inverting) inputs	B1	
either output (potential) dependent on which input is the larger $or V^+ > V^-$, then V_{OUT} is positive states the other condition	B1 B1	[3]
(b) (i) ring drawn around both the LEDs (and series resistors)	B1	[1]
(ii) $V^- = (1.5 \times 2.4)/(1.2 + 2.4) = 1.0 \text{ V}$ (allow $1.5 \times 2.4/3.6 = 1.0 \text{ V}$)	В	[1]
(iii) 1. V _{OUT} switches at +1.0V maximum V _{OUT} is 5.0V	B B	
when curve is above $+1.0 \text{ V}$, V_{OUT} is negative (<i>or v.v.</i>)	В	[3]
 at time t₁, diode R is emitting light, diode G is not emitting at time t₂, diode R is not emitting, diode G is emitting (must be consistent with graph line. If no graph line then 0/2) 	B1 B1	[2]
7 (a e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate		
(1 each, max. 3)	B3	[3]
(b) (i) gain = $1 + (10.8 / 1.2)$ = 10	C1 A1	[2]
(ii) graph: straight line from (0,0) towards $V_{IN} = 1.0 \text{ V}$, $V_{OUT} = 10 \text{ V}$ horizontal line at $V_{OUT} = 9.0 \text{ V}$ to $V_{IN} = 2.0 \text{ V}$ correct +9.0 V $\rightarrow -9.0 \text{ V}$ (and correct shape to $V_{IN} = 0$)	B1 B1 B1	[3]