Electronics

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electronics
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:	63 minutes				
Score:	/52				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a blocks labelled sensing device / sensor / transducer B1 processor / processing unit / signal conditioning B1
(b) (i) two LEDs with opposite polarities (ignore any series resistors) M1
correctly identified as red and green A1
(ii) correct polarity for diode to conduct identified M1
hence red LED conducts when input (+)ve or vice versa A0
2 (a) (i) -9 V
(ii) +9V (both (i) and (ii) correct for the mark) B1
(b) $\times \times$
(b) $\times \times$ B1 B1
$\checkmark \times$
$\checkmark \times$ B1 B1
(no e.c.f. from (a))
(no e.c.f. from (a))
(c) (i) cct: thermistor and resistor in series M1
output connections across thermistor A1
(ii) as temperature decreases, thermistor resistance increases B1
p.d. across thermistor $=R_{\mathrm{T}} /\left(R+R_{\mathrm{T}}\right) \times V$ M1
as R_{T} increases, output increases A1[1]3

3 (a) e.g. infinite (voltage) gain infinite input impedance zero output impedance infinite bandwidth infinite slew rate
(any three, 1 each) B
(b) (i) negative (feedback) B1
(ii) 1 gain $(=5.8 / 0.069)=84 \quad$ B1
(ii) 2 gain $=1+120 / X \quad$ C1 $84=1+120 / X$ $X=1.45 \mathrm{k} \Omega \quad \mathrm{A} 1$
(iii) gain increases OR bandwidth reduced OR output increases B1

4
(a $\quad V_{B}=1000 \mathrm{mV}$

5
when strained, $V_{A}=2000 \times 121.5 /(121.5+120.0)$

$$
=1006.2 \mathrm{mV}
$$

M1
change $=6.2 \mathrm{mV}$ (allow 6 mV)
(b) (i) 1. resistor between $\mathrm{V}_{\mathbb{N}}$ and V^{-}and V^{+}connected to earth B1 resistor between V^{-}and $\mathrm{V}_{\text {out }}$ B1
2. $\mathrm{P} /+$ sign shown on earth side of voltmeter

B1
(ii) ratio of $R_{F} / R_{\mathrm{IN}}=40$
$R_{\text {IN }}$ between 100Ω and $10 \mathrm{k} \Omega$
M1 (any values must link to the correct resistors on the diagram)
(a) any value greater than, or equal to, $5 \mathrm{k} \Omega$
(b) (i) 'positive' shown in correct position
(ii) $V^{+}=(500 / 2200) \times 4.5$

$$
\approx 1 \mathrm{~V}
$$

B1
$V^{-}>V^{+}$so output is negative M1
green LED on, (red LED off) A1
(allow full ecf of incorrect value of V^{+})
(iii) either V^{+}increases or $V^{+}>V^{-}$
green LED off, red LED on
C1 A1

B1

 B16
(a) thin / fine metal wire B1 lay-out shown as a grid B1 encased in plastic B1
(b) (i) gain (of amplifier)
(ii) for $V_{\text {OUT }}=0$, then $V^{+}=V^{-}$or $V_{1}=V_{2}$ C1 $V_{1}=(1000 / 1125) \times 4.5$ C1 $V_{1}=4.0 \mathrm{~V}$ A1
(iii) $\quad V_{2}=(1000 / 1128) \times 4.5$

$$
\begin{aligned}
= & 3.99 \mathrm{~V} \\
V_{\text {OUT }} & =12 \times(3.99-4.00) \\
& =(-) 0.12 \mathrm{~V}
\end{aligned}
$$

7 (a) (i) strain gauge B1
(ii) piezo-electric / quartz crystal / transducer
(b) circuit: coil of relay connected between sensing circuit output and earth B1 switch across terminals of external circuit B1 diode in series with coil with correct polarity for diode B1 second diode with correct polarity B1

