Magnetic Fields \& Moving Charges
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Magnetic Fields
Sub Topic	Magnetic Fields \& Moving Charges
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:
Score:
Percentage:

78 minutes
/65
/100

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a) e.g. both transverse/longitudinal/same ty meet at a point, same direction of polarisation, etc....... 1 each, max 3 B3 (allow 1 mark for any condition for observable interference)
(b) (i) 1 allow $0.3 \mathrm{~mm} \rightarrow 3 \mathrm{~mm}$. B1
(i) $\quad \lambda=a x / D$ (allow any subject) B1
(ii) separation increased B1
less bright B1

(ii) separation increased

(ii) separation increased B1 B1
less bright
less bright B1 B1
(ii) separation unchanged B1
fringes brighter B1
further detail, i.e quantitive aspect in (ii)1 or (ii)2 B1
(in (b), do not allow e.c.f. from (b)(i)2)
(a) (gravitational[1]
(ii) gravitational and electric B1
(iii) magnetic and one other field given
(iii) magnetic and one other field given B1 B1
magnetic, graviational and electric
magnetic, graviational and electric B1 B1[1][2]
(b) (i) out of (plane of) paper/page (not "upwards") B
(ii) $B=m v / q r$ C1
$=\left(3.32 \times 10^{-26} \times 7.6 \times 10^{4}\right) /\left(1.6 \times 10^{-19} \times 6.1 \times 10^{-2}\right)$ C1

$$
=0.26 \mathrm{~T}
$$

(c) sketch: semicircle with diameter $<12.2 \mathrm{~cm}$

(a $F=B I L \sin \theta \quad$ C1	
$=2.6 \times 10^{-3} \times 5.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$	
$=3.69 \times 10^{-4} \mathrm{~N}$	A
(allow 1 mark for use of $\cos 34^{\circ}$)	

$$
=2.6 \times 10^{-3} \times 5.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}
$$

$$
=3.69 \times 10^{-4} \mathrm{~N}
$$

A1 [2]
(allow 1 mark for use of $\cos 34^{\circ}$)
(b) peak current $=1.7 \times \sqrt{ } 2$

C1
max. force $=2.6 \times 10^{-3} \times 2.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$

$$
=1.64 \times 10^{-4} \mathrm{~N}
$$

variation $=2 \times 1.64 \times 10^{-4}$

$$
=3.3 \times 10^{-4} \mathrm{~N}
$$

4 (a smooth curve with decreasing gradient, not starting at $x=0$
(b) straight line with positive gradient M1 line starts at origin A1
(c) sinusoidal shape B1
only positive values and peak/trough height constant B14 'loops'B1

5 (a either charge exists in discrete and equal quantities
5 (a erther charge exists in discrete and equal quantities
(b) (force due to magnetic field must be upwards \quad B1
(ii) sketch showing: deflection consistent with force in (b)(i)
reasonable curve
\qquad

6 (a) electric and magnetic fields normal to each other
either charged particle enters region normal to both fields
or correct B direction w.r.t. E for zero deflection
B1
for no deflection, $v=E / B$
B1
(no credit if magnetic field region clearly not overlapping with electric field region)

$$
\text { (b) (i) } \begin{aligned}
m & =B q r / v \\
& =\left(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2}\right) /\left(9.6 \times 10^{4}\right) \\
& =6.61 \times 10^{-26} \mathrm{~kg} \\
& =\left(6.61 \times 10^{-26}\right) /\left(1.66 \times 10^{-27}\right) \mathrm{u} \\
& =40 \mathrm{u}
\end{aligned}
$$

(ii) $q / m \propto 1 / r$ or m constant and $q \propto 1 / r$

B1
q / m for A is twice that for B
B1 ions in path A have (same mass but) twice the charge (of ions in path B)

7 (a force due to magnetic field is constant
force is (always) normal to direction of motion
this force provides the centripetal force
A1
(b) $m v^{2} / r=B q v \quad$ M1
hence $q / m=v / B r \quad$ A0
(c) $\quad\left(\quad q / m=\left(2.0 \times 10^{7}\right) /\left(2.5 \times 10^{-3} \times 4.5 \times 10^{-2}\right)\right.$ $=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$

C A1
(ii) sketch: curved path, constant radius, in direction towards bottom of page tangent to curved path on entering and on leaving the field A1

8 (a) either constant speed parallel to plate or accelerated motion/force normal to plate/in direction field

A1 [1]

B1 B1 B1

B1 [2]
(ii) force due to magnetic field $=$ force due to electric field $B q=q E$
$B=E / v$
$=\left(2.8 \times 10^{4}\right) \mid\left(4.7 \times 10^{5}\right)$
$=6.0 \times 10-{ }^{2} \mathrm{~T}$
(c) (i) no change/not deviated
(ii) deviated upwards
(iii) no change/not deviated
[1]
(b) (i) direction of force due to magnetic field opposite to that due to electric field magnetic field into plane of page

B1 [1]
[1]

