Magnetic Fields & Moving Charges

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Magnetic Fields
Sub Topic	Magnetic Fields & Moving Charges
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowe	d:	83 minute	83 minutes					
Score:		/69	/69					
Percentage:		/100						
A*	A	В	С	D	E	U		
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%		

1	(a (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A (creates) force per unit length of 1 N m ⁻¹			[2]
	(b)	sketch: concentric circles increasing separation <i>(must show more than 3 circles)</i> correct direction (anticlockwise, looking down)	M1 A1 B1	[3]
		(ii) $B = (4\pi \times 10^{-7} \times 6.3) / (2\pi \times 4.5 \times 10^{-2})$ = 2.8 × 10 ⁻⁵ T	C A1	[2]
		(iii) $F = BIL (\sin \theta)$ = 2.8 × 10 ⁻⁵ × 9.3 × 1 $F/L = 2.6 \times 10^{-4} \text{ N m}^{-1}$	C1 A1	[2]

(c)	c) force per unit length depends on product $I_X I_Y$ / by Newton's third law / action and						
	reaction are equal and opposite		M1				
	so same for both		A1	[2]			

2	(a	(i)	particle must be moving with component of velocity normal to magnetic field		M1 A1	[2]
		(ii)	$F = Bqv \sin \theta$ q, v and θ explained		M1	[2]
	(b)	(i)	face BCGF shaded		A1	[1]
		(ii)	between face BCGF and face ADHE		A1	[1]
	(c)	pot eith or e	ential difference gives rise to an <u>electric</u> field per F _E = qE (no need to explain symbols) electric field gives rise to force (on an electron)		M1 A1	[2]
3	(a	force prov	e on proton is normal to velocity and field ides centripetal force (for circular motion)		M1 A1	[2]
	(b)	mag cent v = r	netic force = Bqv ripetal force = $mr\omega^2$ or mv^2/r		B1 B1 B1	
		ω=	= Bqr@ = mr@- Bq/m		A1	[4]
4	(a)	skete	ch: concentric circles <i>(minimum of 3 circles)</i> separation increasing with distance from wire correct direction	M1 A1 B1		[3]
	(b)	(i)	arrow direction from wire B towards wire A	B1		[1]
		(ii)	either reference to Newton's third law for force on each wire proportional to product of the two currents so forces are equal	M1 A1		[2]
	(c)	force varie varia	e <u>always</u> towards wire A/ <u>always</u> in same direction s from zero (to a maximum value) (1) tion is sinusoidal / sin ² (1)	B1		
		(at) t <i>(any</i>	wice trequency of current (1) two, one each)	B2		[3]

5	(a)	(long) straight conductor carrying current of 1 AM1current/wire normal to magnetic fieldM1(for flux density 1 T,) force per unit length is 1 N m ⁻¹ A1				3]
	(b)	(i)	(originally) downward force on magnet (due to current) by Newton's third law (allow "N3") upward force on wire	B1 M1 A1	[3]
		(ii)	F = BIL 2.4 × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻² B = 0.066 T (need 2 SF) (g missing scores 0/2, but g = 10 leading to 0.067T scores 1/2)	C1 A1	[.	2]
	(c)	new eith or	v reading is 2.4√2g er changes between +3.4g and –3.4g total change is 6.8g	C1 A1	[2]
6	(8	a (i (ii	i) $Bqv(sin\theta)$ or $Bqv(cos\theta)$ i) qE		B1 B1	[1] [
	(k	b) F S(_B must be opposite in direction to <i>F</i> _E o magnetic field <u>into</u> plane of paper		B1 B1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —

7	(a)	unit fielo foro	of magnetic flux density d nonnal to (straight) conductor carrying current of 1 A ce per unit length is 1 Nm- ¹	B1 M1 A1	[3]
	(b)	(i)	force on particle always normal to direction of motion (and speed of particle is constant)	M1	
			magnetic force provides the centripetal force	A1	[2]
		(ii)	$mv^2/r = Bqv$ r = mv/Bq	M1 AO	1
	(c)	(i)	the momentum/speed is becoming less so the radius is becoming smaller	M1 A1	[2]
		(ii)	1. spirals are in opposite directions so oppositely charged	M1 A1	[2]
			2. equal <u>initial</u> rad i so equal (initial) speeds	M1 A1	[2]

8	(a)	reg eith	ion (of space) where there is a force per on / produced by magnetic pole	M1	
		or	on / produced by current carrying conductor / moving charge	A1	[2]
	(b)	(i)	force on particle is (always) normal to velocity / direction of travel	B1	
			speed of particle is constant	B1	[2]
		(ii)	magnetic force provides the centripetal force	B1	
			$mv^2 / r = Bqv$	M1	
			r=mv/Bq EMISTRYONLINE	AO	[2]
	(c)	(i)	direction from 'bottom to top' of diagram	B1	[1]
		(ii)	radius proportional to momentum ratio = $5.7/7.4$	C1	
			= 0.77 (answer must be consistent with direction given in (c)(i))	A1	[2]