Magnetic Fields & Moving Charges

Mark Scheme 3

Level	International A Level						
Subject	Physics						
Exam Board	CIE						
Topic	Magnetic Fields						
Sub Topic	Magnetic Fields & Moving Charges						
Paper Type	Theory						
Booklet	Mark Scheme 3						

Time Allowed: 75 minutes

Score: /62

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a field into (the plane of) the paper

B1 [1]

(b) force due to magnetic field <u>provides</u> the centripetal force $mv^2 / r = Bav$

B1 C1

 $B = (20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{-19}) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-19})$ = 0.454T

B1 A0 [3]

(c) (i) semicircle with diameter greater than 12.8 cm

B1 [1]

(ii) new flux density = $\frac{22}{20} \times 0.454$ B = 0.499 T

A1 [2]

C1

2 (a force due to *E*-field is <u>equal and opposite</u> to force due to *B*-field Eq = Bqv v = E/B

B1 B1 [3]

(b) either charge and mass are not involved in the equation in (a) or F_E and F_B are both doubled $ef{equation}$ $ef{equation}$ $ef{equation}$ $ef{equation}$ charge

M1 A1 [2]

3 (a) arrow pointing up the page

so no deviation

B1 [1]

[3]

- (b) Eq = Bqv C1 $v = (12 \times 10^3) / (930 \times 10^{-6})$ C $= 1.3 \times 10^7 \text{ m s}^{-1}$ A1
 - (ii) $Bqv = mv^2 / r$ $q/m = (1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ $= 1.8 \times 10^{11} \text{ C kg}^{-1}$

C1 C A1 [3]

(i) straight line with positive gradient M1 through origin Α1 [2] (ii) maximum force shown at $\theta = 90^{\circ}$ M1 zero force shown at $\theta = 0^{\circ}$ M1 reasonable curve with F about ½ max at 30° A1 [3] (b) (i) force on electron due to magnetic field **B1** force on electron normal to magnetic field and direction of electron B1 [2] (ii) quote / mention of (Fleming's) left hand rule M1 electron moves towards QR A1 [2] 5 [3] [1] [2] current = $(2.8 / 1.9) \times 1.7$ [2] [Total: 8]

6	(a)		concentric circles, anticlockwise(minimum 3 circles)separation of lines increases with distance from wire		[2]
	(ii) (direction from Y towards X	A1	[1]
	(b) (Flux density at wire Y = $(4\pi \times 10^{-7} \times 5.0) / (2\pi \times 2.5 \times 10^{-2})$ = 4.0×10^{-5} T Force per unit length = BI = $4.0 \times 10^{-5} \times 7.0$ = 2.8×10^{-4} N	C1 C1	[4]
	(either force depends on product of the currents in the two wires so equal (isolated system so) Newton's 3 rd law applies so equal	A1 . (M1)	[2] : 9]
,	7 (a)	(uı	it of magnetic flux density / magnetic field strength niform) <u>field</u> normal to wire carrying current of 1 A ring force (per unit length) of 1 N m ⁻¹	B1 M A1	[3]
	(b)	(i)	force on magnet / balance is downwards (so by Newton's third law) force on wire is upwards pole P is a north pole	B1 M1 A1	[3]
		(ii)	F = BIL and $F = mg$ (g missing, then 0/3 in (ii)) 2.3 × 10 ⁻³ × 9.8 = B × 2.6 × 4.4 × 10 ⁻² (g = 10, loses this mark) B = 0.20 T	C1 C1 A1	[3]
	(c)		ading for maximum current = $2.3 \times \sqrt{2}$ al variation = $2 \times 2.3 \times \sqrt{2}$ = 6.5 g	C A1	[2]
8	(a	a fo	ion (of space) / area where orce is experienced by rent-carrying conductor / moving charge / permanent magnet	B1 M1 A1	[3]
	(b)	(i)	electric	B1	[1]
		(ii)	gravitational	B1	[1]
		(iii)	magnetic	B1	[1]
		(iv)	magnetic	B1	[1]