Electromagnetic Induction Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electromagnetic Induction
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1
Time Allowed:	69 minutes
Score:	/57
Percentage:	/100
A* A	B C D E U
>85% '77.5%	70% 62.5% 57.5% 45% <45%

1	(a	(i)	field shown as right to left	B1	[1]
		(ii)	lines are more spaced out at ends	B1	[1]
	(b)	Hal eith	l voltage depends on angle er between field and plane of probe	M1	
		or z	zero when field parallel to plane of probe	A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (<i>allow rate of cutting of flux</i>)	M1 A1	[2]
		(ii)	e.g. move coil towards/away from solenoid rotate coil vary current in solenoid insert iron core into solenoid		[0]
			(any three sensible suggestions, 'I each)	В	[3]
2	(a	(i)	region (of space) <i>either</i> where a moving charge (may) experience a force <i>or</i> around a magnet where another magnet experiences a force	B1	[1]
		(ii)	$(\Phi =) BA \sin \theta$	A1	[1]
	(b)) (i)	plane of frame is always parallel to B_V / flux linkage always zero	B1	[1]
		(ii)	$\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ = 8.9 × 10 ⁻⁶ Wb	C1 A1	[2]
	(c)	((induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (<i>allow rate of cutting of flux</i>)	M1 A1	[2]
		(ii)	e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ = 3.0×10^{-5} V	A1	[1]
		(iii)	This question part was removed from the assessment. All candidates were awarded 1 mark.	B1	[1]

3	(a	(uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A (creates) force per unit length of $1 N m^{-1}$			[2]
	(b)	(flux density = $4\pi \times 10^{-7} \times 1.5 \times 10^3 \times 3.5$ = 6.6×10^{-3} T	C1 A	[2]
		(ii)	flux linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb	C1	[2]
	(c)	((induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	e.m.f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = 7.4×10^{-3} V	C1 A	[2]
4	(a	eith whe θ is or $\phi =$ whe	ther $\phi = BA \sin \theta$ Here A is the area (through which flux passes) Here A is angle between B and (plane of) A Here A is area normal to B	M1 A1 (M1) (A1)	[2]
	(b)	gra sha	aph: $V_{\rm H}$ constant and non zero between the poles and zero outside arp increase/decrease at ends of magnet	M1 A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	short pulse on entering and on leaving region between poles pulses approximately the same shape but opposite polarities e.m.f. zero between poles and outsi	M1 A1 A1	[3]

				[2]
		(ii) 1. moving magnet causes change of flux linkage2. speed of magnet varies so varying rate of change of flux3. magnet changes direction of motion (so current changes direction)	81 81 81	[1] [1] [1]
((b)	period= 0.75s frequency= 1.33 Hz	C1 A1	[2]
((c)	graph: smooth correctly shaped curve with peak at fo A never zero	M1 A1	[2]
((d)	(i) resonance	81	[1]
		(ii) e.g. quartz crystal for timing/ production of ultrasound	A1	[1]

6	(a	magnetic flux	= <i>BA</i>			
0		-	$= 89 \times 10^{-3} \times 5.0 \times 10^{-2}$	< 2.4 × 10 ⁻²	C1	
			$= 1.07 \times 10^{-4} \text{ Wb}$		A1	[2]

(b)	(i)	e.m.f.	$= \Delta \phi / \Delta t$	C1	
		(for $\Delta \phi$	= 1.07×10^{-4} Wb), $\Delta t = 2.4 \times 10^{-2} / 1.8 = 1.33 \times 10^{-2}$ s	C1	
		e.m.f.	$= (1.07 \times 10^{-4}) / (1.33 \times 10^{-2})$		
			$= 8.0 \times 10^{-3} \text{ V}$	A1	[3]

(ii) current = $8.0 \times 10^{-3} / 0.12$ $\approx 70 \text{ mA}$ M1 A0 [1]

force on wire = BIL	
$= 89 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$	C1
$\approx 3 \times 10^{-4}$ (N)	M1
suitable comment e.g. this force is too / very small (to be felt)	A1 [3]
	force on wire = <i>BIL</i> = $89 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ $\approx 3 \times 10^{-4}$ (N) suitable comment e.g. this force is too / very small (to be felt)