Electromagnetic Induction Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electromagnetic Induction
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2
Time Allowed:	75 minutes
Score:	/62
Percentage:	/100
A* A	B C D E U
>85% '77.5%	70% 62.5% 57.5% 45% <45%

1	(a	(i)	$V_{\rm H}$ depends on angle between (plane of) probe and <i>B</i> -field either $V_{\rm H}$ max when plane and <i>B</i> -field are normal to each other or $V_{\rm H}$ zero when plane and <i>B</i> -field are parallel		
			or $V_{\rm H}$ depends on sine of angle between plane and <i>B</i> -field		[2]
		(ii)	1 calculates $V_{H}r$ at least three times	M1	
			or to 2 s.f., not constant so invalid	A1	[2]
			2 straight line passes through origin	B1	[1]
	(b)	(i)	e.m.f. induced is proportional / equal to rate of change of (magnetic) flux (linkage) constant field in <u>coil</u> / flux (linkage) of <u>coil</u> does not change	M1 A1 B1	[3]
		(ii)	e.g. vary current (in wire) / switch current on or off / use a.c. current		
			move coil <u>towards</u> / <u>away</u> from wire (1 mark each, max 3)	В3	[3]
2	(ä	a) (i	i) e.m.f. induced proportional / equal to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii	i) e.m.f. (induced) only when flux is changing / cut direct current gives constant flux	B1 B1	[2]
	(b) (i	 i) (induced) e.m.f. / current acts in such a direction to produce effects to oppose the change causing it 	B1 B1	[2]
		(ii	 (induced) current in <u>secondary</u> produces magnetic field opposes (changing) field produced in <u>primary</u> so not in phase 	M1 M1 A0	[2]
	(0	c) (i	i) alternating means that voltage / current is easy to change	B1	[1]
		(ii	i) high voltage means less power / energy loss (during transmission)	B1	[1]
				[Tota	l: 10]

coil in series with meter (do not allow inclusion of a cell)	B1	
push known pole into coil	B1	
observe current direction (not reading)	B1	
(induced) field / field from coil repels magnet		
either states rule to determine direction of magnetic field in coil		
or reversing magnet direction gives opposite deflection on meter	B1	
direction of induced current such as to oppose the change producing it	B1	[6]
	coil in series with meter <i>(do not allow inclusion of a cell)</i> push <u>known</u> pole into coil observe current <u>direction</u> <i>(not reading)</i> (induced) field / field from coil repels magnet either states rule to determine direction of magnetic field in coil or reversing magnet direction gives opposite deflection on meter direction of induced current such as to oppose the change producing it	coil in series with meter (do not allow inclusion of a cell)B1push known pole into coilB1observe current direction (not reading)B1(induced) field / field from coil repels magnetB1eitherstates rule to determine direction of magnetic field in coilorreversing magnet direction gives opposite deflection on meterB1direction of induced current such as to oppose the change producing itB1

		<i>(</i> 1)			
4	(a	(1)	or improves flux linkage with secondary	B1	[1]
		(ii)	reduces eddy current (losses) reduces losses of energy (in core)	B1 B1	[2]
	(b)	(i)	(induced) e.m.f. proportional to / equal to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	changing current in primary gives rise to(1)changing flux in core(1)flux links with the secondary coil(1)changing flux in secondary coil, inducing e.m.f.(1)		
		(c) ((any three, 1 each to max 3) e.g. can change voltage easily / efficiently	B3	[3]
			high voltage transmission reduces power losses (any two sensible suggestions, 1 each)	B2	[2]

5	(a	par	allel (to the field)	B1	[1]
	(b)	(i)	torque = $F \times d$ 2.1 × 10 ⁻³ = $F \times 2.8 \times 10^{-2}$ F = 0.075 N (use of 4.5 cm scores no marks)	C1 A1	[2]
		(ii)	zero	A1	[1
	(c)	F = 0.0 B =	= $BILN(\sin\theta)$ 75 = $B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ = 7.0×10^{-2} T = 70 mT	C M1 A0	[2]
	(d)	(i)	(induced) <u>e.m.f.</u> is proportional to / equal to <u>rate of change</u> of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	change in flux linkage = BAN = 0.070 × 4.5 × 10 ⁻² × 2.8 × 10 ⁻² × 140 = 0.0123 Wb turns induced e.m.f = 0.0123 / 0.14 = 88 mV (Note: This is a simplified treatment. A full treatment would involve the averaging of B cos θ leading to a $\sqrt{2}$ factor)	C1 C1 A1	[3]
6	(a	(i)	oscillations are <u>damped</u> /amplitude decreases as magnet moves, flux is cut by coil e.m.f./current is induced in the co causing energy loss in load OR force on magnet energy is derived from oscillations of magnet OR force opposes motion of magnet	B1 B1 B1 B1 B1	[5]
		(ii)	T = 0.60 s $\omega_0 \ (= 2\pi/T) = 10.5 \text{ rad s}^{-1}$	C1 A1	[2]
	(b)	ske san	tch: sinusoidal wave with period unchanged or slightly smaller ne initial displacement, less damping	M1 A1	[2]
	(c)	(i)	sketch: general shape – peaked curve peak at ω_0 and amplitude never zero	M1 A1	[2]
		(ii)	resonance	B1	[1]
	((iii)	useful: e.g. child on swing, microwave oven heating avoid: e.g. vibrating panels, vibrating bridges (for credit, stated example must be put in context)	B1 B1	[2]

.