Electromagnetic Induction Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electromagnetic Induction
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3
Time Allowed:	77 minutes
Time Allowed: Score:	77 minutes /64
Score:	/64
Score:	/64

1 (a)	(i)	(induced) e.m.f proportional/equal to rate of change of flux (linkage) (allow 'induced voltage, induced p.d.)			
		flux is cust as the disc moves hence inducing an e.m.f	M1 A0	[2]	
	(ii)	field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole disc) so different e.m.f.'s in different parts of disc lead to eddy currents	B1 M1 A0	[2]	
(b)	eddy currents dissipate thermal energy in disc energy derived from oscillation of disc energy of disc depends on amplitude of oscillations				

2	(a)	(numerically equal to) force per unit length on straight conductor carrying unit current normal to the field	M1 A1 A1	[3]
	(b)	flux through coil = $BA \sin \theta$ flux linkage = $BAN \sin \theta$	B1	[2]
	(c)(i)	(induced) e.m.f. proportional to rate of change of flux (linkage)	M1 A1	[2]
	(ii)	graph: two square sections in correct positions, zero elsewhere pulses in opposite directions amplitude of second about twice amplitude of first	B1 B1 B1	[3]

(a)	(i) 50 mT						
	(ii)	flux linkage = <i>BAN</i> = 50 x 10 ⁻³ x 0.4 x 10 ⁻⁴ x 150 = 3.0 x 10 ⁻⁴ Wb	1 1	[3]			
		(allow 49 mT \rightarrow 2.94 x 10 ⁻⁴ Wb or 51 mT \rightarrow 3.06 x 10 ⁻⁴ Wb)					
(b)	prop	f./induced voltage <i>(do not allow current)</i> ortional/equal to of change/cutting of flux (linkage)	1 1	[2]			
(c)	(i)	new flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ = 4.8×10^{-5} Wb change = 2.52×10^{-4} Wb	1 1	[2]			
	(ii)	e.m.f. = $(2.52 \times 10^{-4})/0.30$ = 8.4 x 10 ⁻⁴ V	1 1	[2]			
(d)		 for a small change in distance x (change in) flux linkage decreases as distance increases so speed must increase to keep rate of change constant (change in) flux linkage decreases as distance increases 	1 1 1 (1)	[3]			
	or (change in) flux linkage decreases as distance increases at constant speed, e.m.f/flux linkage decreases as x increases so increase speed to keep rate constant						

<u>CHEMISTRY ONLINE</u> — TUITION —

3

4	(a)		field producing force of 1.0 N m ⁻¹ on wire <i>OR B</i> = <i>F/IL</i> sin2M1 carrying current of 1.0 A normal to field <i>OR</i> symbols explained A1				
	(b)	(i)	$\phi = BA$ = 1.8 x 10 ⁻⁴ x 0.60 x 0.85C1 = 9.18 x 10 ⁻⁵ WbA1	[2]			
		(ii)	$\Delta \phi = 9.18 \times 10^{-5} \text{ Wb}$ A1				
		(ii)	$e = (N\Delta\phi)/\Delta t$ = (9.18 x 10 ⁻⁵)/0.20	[3]			
		(iii)	there is an e.m.f. and a complete circuit <i>OR</i> no resultant e.m.f. from other three sides <i>OR</i> no e.m.f. in AB so yesB1	[1]			

5	(a)	(i)	the wire cuts magnetic field B1	
			e.m.f. induced when there is a change/cutting of flux	
		(ii)	{Lenz) e.m.f. 'opposes' change causing it B1	
			as direction of movement changes, so does e.m.f	[4]
	(b)		$x_0 = 15 \text{ mV}$ (allow ±0.1) C1	
	. ,		$m = 2lt / T = 2lt (3 \times 10^3)$ C1	
			$= 2090 \text{ rad s}^{-1}$	
			$x = 15 \sin 2090t$	[4]

CHEMISTRY ONLINE — TUITION —

6	(a) (i) to concentrate the (magnetic) flux / reduce flux losses							B1		[1]			
	 (ii) changing flux (in core) induces current in core currents in core give rise to a heating effect 								M′ A1		[2]		
	 (b) (i) e.m.f. induced proportional to rate of change of (magnetic) flux (linkage) 									M [·] A1		[2]	
(ii) magnetic flux in phase with / proportional to e.m.f. / current in primary e.m.f. / p.d. across secondary proportional to rate of change of flux so e.m.f. of supply not in phase with p.d. across secondary								y coil	M ² M ² A0	1	[2]		
	(c)	(i)		power (tran current, less							B1 B1		[2]
		(ii)	voltage is	easily / eff	iciently cha	anged					B1		[1]
	7 (a	ı) (i)		d in core m an e.m.f./c			in the sec	condary			/11 \1	[2]	
		(i	/ /	= VI power is co	onstant so	if V _S inc	creases, I	/ _s decrea	ses		//1 \1	[2]	
	(b) (same s	hape and p	phase as <i>l</i>	l _P graph				E	31	[1]	
		(i		requency phase w.r.	t. Fig. 6.3						//1 \1	[2]	
		(i	i) ½π <u>rad</u>	or 90°						E	31	[1]	