Electromagnetic Induction Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electromagnetic Induction
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	77 minutes				
Score:	/64				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) (i) (induced) e.m.f proportional/equal to rate of change of flux (linkage) B1
(allow induced voltage, induced p.d.)
flux is cust as the disc moves M1
hence inducing an e.m.f A0
(ii) field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole disc) B1
so different e.m.f.'s in different parts of disc M1
lead to eddy currents AO
(b) eddy currents dissipate thermal energy in disc B1
energy derived from oscillation of disc B1 B1
energy of disc depends on amplitude of oscillations B1
(a) (numerically equal to) force per unit length M1
on straight conductor carrying unit current A1
normal to the field A1
(b) flux through coil $=B A \sin \theta$
\qquad
(c)(i) (induced) e.m.f. proportional to ... M1 rate of change of flux (linkage) .. A1
(ii) graph: two square sections in correct positions, zero elsewhere B1 pulses in opposite directions ... B1 amplitude of second about twice amplitude of first B1
(a) (i) 50 mT
(ii) flux linkage $=B A N$

$$
=50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150=3.0 \times 10^{-4} \mathrm{~Wb}
$$

(allow $49 \mathrm{mT} \rightarrow 2.94 \times 10^{-4} \mathrm{~Wb}$ or $51 \mathrm{mT} \rightarrow 3.06 \times 10^{-4} \mathrm{~Wb}$)
(b) e.m.f./induced voltage (do not allow current)
proportional/equal to rate of change/cutting of flux (linkage)
(c) (i) new flux linkage $=8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$

$$
=4.8 \times 10^{-5} \mathrm{~Wb}
$$

change $=2.52 \times 10^{-4} \mathrm{~Wb}$
(ii) e.m.f. $=\left(2.52 \times 10^{-4}\right) / 0.30$

$$
=8.4 \times 10^{-4} \mathrm{~V}
$$

(d) either for a small change in distance x (change in) flux linkage decreases as distance increases so speed must increase to keep rate of change constant at constant speed, e.m.f/flux linkage decreases as x increases so increase speed to keep rate constant

4 (a) field producing force of $1.0 \mathrm{~N} \mathrm{~m}^{-1}$ on wire $O R B=F / I L \sin 2 \ldots \ldots \mathrm{M} 1$ carrying current of 1.0 A normal to field $O R$ symbols explained ... A1
(b) (i) $\quad \phi=B A$
(ii) $\quad \Delta \phi=9.18 \times 10^{-5} \mathrm{~Wb}$ A1
(ii) $e=(N \Delta \phi) / \Delta t$

$$
\begin{aligned}
& =\left(9.18 \times 10^{-5}\right) / 0.20 \text {... }
\end{aligned}
$$

(iii) there is an e.m.f. and a complete circuit $O R$ no resultant e.m.f. from other three sides OR no e.m.f. in $A B$ so yes.. B1

5 (a) (i) the wire cuts magnetic field $\ldots \ldots \ldots$ e.m.f. induced when there is a change/cutting of flux................. B1
(ii) \{Lenz) e.m.f. 'opposes' change causing it B 1 as direction ofmovement changes, so does e.m.f. $\ldots \ldots \ldots \ldots \ldots \ldots$............. 1

6 (a) (i) to concentrate the (magnetic) flux / reduce flux losses B1
(ii) changing flux (in core) induces current in core M1 currents in core give rise to a heating effect A1
(b) (i) e.m.f. induced proportional to M1 rate of change of (magnetic) flux (linkage) A1
(ii) magnetic flux in phase with / proportional to e.m.f. / current in primary coil M1 e.m.f. / p.d. across secondary proportional to rate of change of flux M1 so e.m.f. of supply not in phase with p.d. across secondary A0
(c) (i) for same power (transmission), high voltage with low current with low current, less energy losses in transmission cables

B1
(ii) voltage is easily / efficiently changed

B1

7 (a) (i) flux/field in core must be changing
so that an e.m.f./current is induced in the secondary
(ii) power $=$ VI
output power is constant so if V_{S} increases, I_{s} decreases
(b) (same shape and phase as I_{P} graph
(ii) same frequency
(iii) $1 / 2 \pi \mathrm{rad}$ or 90°

B1 [1]
[2]
[1]

