Transformations & Transmission of Electrical Energy

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Alternating Currents
Sub Topic	Transformers & Transmission of Electrical Energy
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 51 minutes

Score: /42

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A student is asked to design a circuit by which a direct voltage of peak value 9.0V is obtained from a 240V alternating supply.

The student uses a transformer that may be considered to be ideal and a bridge rectifier incorporating four ideal diodes.

The partially completed circuit diagram is shown in Fig. 6.1.

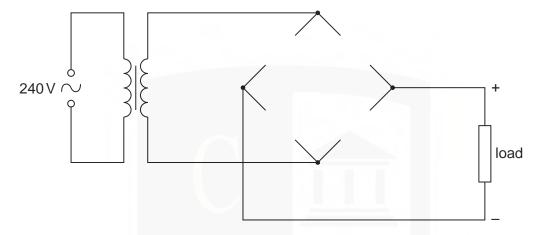


Fig. 6.1

- (a) On Fig. 6.1, draw symbols for the four diodes so as to produce the polarity across the load as shown on the diagram. [2]
- (b) Calculate the ratio

number of turns on the secondary coil number of turns on the primary coil

CHEMISTRY ONLINE

ratio =[3]

2 An ideal iron-cored transformer is illustrated in Fig. 6.1.

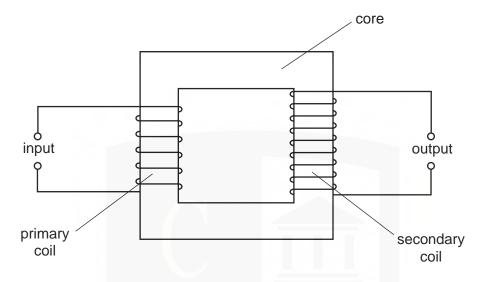


Fig. 6.1

(a) Explain why

(i)	the supply to the primary coil must be alternating current, not direct current,
	[2]
(ii)	for constant input power, the output current must decrease if the output voltage increases.
	CHEVICTRYONITINE
	[2]

(b) Fig. 6.2 shows the variation with time t of the current I_p in the primary coil. There is no current in the secondary coil.

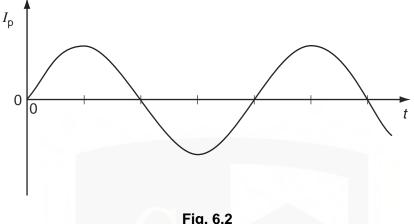


Fig. 6.2

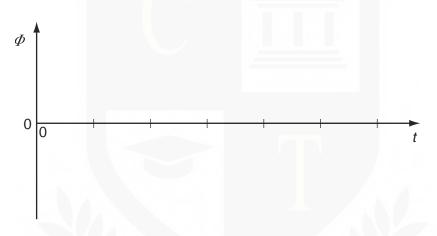


Fig. 6.3

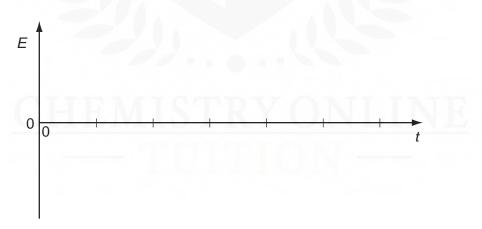


Fig. 6.4

- (i) Complete Fig. 6.3 to show the variation with time t of the magnetic flux Φ in the core. [1]
- Complete Fig. 6.4 to show the variation with time t of the e.m.f. E induced in the (ii) secondary coil.
- (iii) Hence state the phase difference between the current $I_{\rm p}$ in the primary coil and the e.m.f. E induced in the secondary coil.

(a) The mean value of an alternating current is zero. Explain (i) why an alternating current gives rise to a heating effect in a resistor, (ii) by reference to heating effect, what is meant by the root-mean-square (r.m.s.) value of an alternating current. **(b)** A simple iron-cored transformer is illustrated in Fig. 7.1. secondary primary coil coil iron core Fig. 7.1 State Faraday's law of electromagnetic induction.

4 An ideal transformer is illustrated in Fig. 6.1.

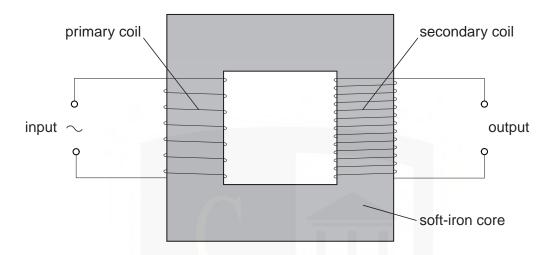


Fig. 6.1

(a) (i)	State Faraday's law of electromagnetic induction.
	roz
	[2]
(ii)	Use the law to explain why a transformer will not operate using a direct current input.
	[2]
(b) (i)	State Lenz's law.
	[2]
(ii)	Use Lenz's law to explain why the input potential difference and the output e.m.f. are not in phase.
	[2]

(i)	alternating voltage,	г
(ii)	high voltage.	[
		[

5 A simple iron-cored transformer is illustrated in Fig. 6.1.

Fig. 6.1

- (a) Suggest why the core is
 - (i) a continuous loop,

 [1]

 (ii) laminated.

 [2]
- (b) (i) State Faraday's law of electromagnetic induction.

.....[2]

(ii) Use Faraday's law to explain the operation of the transformer.

	I
2)