AC Basics Mark Scheme

Level	International A Level	
Subject	Physics	
Exam Board	CIE	
Торіс	Alternating Currents	
Sub Topic	AC Basics	
Paper Type	Theory	
Booklet	Mark Scheme	

Time Allowed:	52 minutes			
Score:	/43			
Percentage:	/100			

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

))	[2]
1 1	[2]
1 1	[2]
1 1 1	[3]
C1 A1	[2]
A1	[1]
A1	[1]
A1	[1]
C1 A1	[2]
)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 ((i) $2\pi f = 380$ frequency = 60 Hz	C1 A1	[2]	
	(ii) $I_{\text{RMS}} \times \sqrt{2} = I_0$	C1		
	$I_{\rm RMS} = 9.9 / \sqrt{2}$ = 7.0 A	A1	[2]	
(b) power = $I^2 R$	C1		
	$R = 400 / 7.0^2$ = 8.2 Ω	A1	[2]	
₄ (a	power / heating depends on I^2 so independent of current direction		M1 A1	[2]
(b)	either maximum power = $I_0^2 R$ or average power = $I_{RMS}^2 R$ $I_0 = \sqrt{2} \times I_{RMS}$		M1 M1	
	ratio = 0.5		A1	[3]

<u>CHEMISTRY ONLINE</u> — TUITION —

(a)	eith or	er	the value of steady / constant voltage that produces same power (in a resistor) as the alternating voltage if alternating voltage is squared and averaged the r.m.s. value is the square root of this averaged value						M1 A1 (M1) (A1)	[2]
(b)		220	V						A1	[1
	(ii)	156	V						A1	[1
	(iii)	60 H	z						A1	[1
(c)	pov	ver =	$V_{\rm rms}^2$ / R						C1	
	R = = 1	= 156 6Ω	- / 1500						A1	[2]
6	(a		the (value o that dissipa allow 'same	of the) di ites (hea e <i>power'</i>	irect current at) energy at <i>and 'same h</i>	the same rat eating effect	te (in a resist	or)	M1 A1	[2]
	(b)		$\sqrt{2I_{\rm rms}} = I_0$						B1	[1]
	(c)	(i) (ii	power $\propto I^2$ ratio = 2.0 (advantage:	or <i>P</i> = <i>Î</i> (allow 1 e.g. eas	² R or P = VI s.f.) sy to change	the voltage			C1 A1 B1	[2]
			disadvanta	ge: e.g.	cables requirectification	ire greater in – with some	nsulation justification		B1	[2]
	(d)	(i) (ii	3.0 A (allow) 3.0 A (allow)	v 1 s.f.) v 1 s.f.)				Total	A1 A1	[2] [9]

5