Transformations & Transmission of Electrical

Energy

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Alternating Currents
Sub Topic	Transformers & Transmission of Electrical Energy
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed: 53 minutes

Score: /44

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- can change (output) voltage efficiently or to suit different consumers/appliances **B1** 1 by using transformers В1 [2] **(b)** for same power, current is smaller B1 less heating in cables/wires or thinner cables possible or less voltage loss in cables B1 [2]
 - (a) moving magnet gives rise to/causes/induces e.m.f./current in solenoid/coil **B1** (induced current) creates field/flux in solenoid that opposes (motion of) magnet **B1** work is done/energy is needed to move magnet (into solenoid) **B1** (induced) current gives heating effect (in resistor) which comes from the work done B1 [4] (b) current in primary coil give rise to (magnetic) flux/field **B1** (magnetic) flux/field (in core) is in phase with current (in primary coil) **B1** (magnetic) flux threads/links/cuts secondary coil inducing e.m.f. in secondary coil **B1** (there must be a mention of secondary coil) e.m.f. induced proportional to rate of change/cutting of flux/field so not in phase **B**1 [4]
- (i) to reduce power loss in the core 3 due to eddy currents/induced currents **B1** [2] no power loss in transformer (ii) either input power = output power **B1** [1] or
 - (b) either r.m.s. voltage across load = $9.0 \times (8100 / 300)$ C₁ peak voltage across load $= \sqrt{2} \times 243$ = 340 V[2] Α1 peak voltage across primary coil = $9.0 \times \sqrt{2}$ (C1) or peak voltage across load $= 12.7 \times (8100/300)$ = 340 V

B1

(A1)

Į	(a induced e.m.f./current produces effects/acts in such a direction/tends to oppose the change causing it				A1	[2]
	(b)	(i)		to reduce flux losses/increase flux linkage/easily magnetised <u>an</u> nagnetised	<u>ıd</u>	[1]
			cau	o <u>reduce</u> energy/heat losses (do not allow 'to prevent energy losses') used by eddy currents ow 1 mark for 'reduce eddy currents')	M A1	[2]
		(ii)	give flux	ernating current/voltage es rise to (changing) flux in core clinks the <u>secondary coil</u> Faraday's law) changing flux induces e.m.f. (in secondary coil)	B1 B1 M1 A1	[4]
	5	(a)	(i) (ii)	to concentrate the (magnetic) flux / reduce flux losses changing flux (in core) induces current in core currents in core give rise to a heating effect	B1 M1 A1	[1] [2]
		(b)	(i) (ii)	e.m.f. induced proportional to rate of change of (magnetic) flux (linkage) magnetic flux in phase with / proportional to e.m.f. / current in primary coil e.m.f. / p.d. across secondary proportional to rate of change of flux so e.m.f. of supply not in phase with p.d. across secondary	M1 A1 M1 M1 A0	[2]
		(c)	(i)	for same power (transmission), high voltage with low current with low current, less energy losses in transmission cables	B1 B1	[2]
			(ii)	voltage is easily / efficiently changed	B1	[1]

6	(a	(i)	e.g. prevent flux losses / improve flux linkage	B1	[1]
		(ii)	flux in core is changing e.m.f. / current (induced) in core induced current in core causes heating	B1 B1 B1	[3]
	(b)	(i)	that value of the direct current producing same (mean) power / heating in a resistor	M1 A1	[2]
		(ii)	power in primary = power in secondary $V_P I_P = V_S I_S$	M1 A1	[2]