Rectification

Mark Scheme

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Alternating Currents
Sub Topic	Rectification
Paper Type	Theory
Booklet	Mark Scheme

Time Allowed: 90 minutes

Score: /75

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- M1 1 (a (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) Α1 [2]
 - (b) positive terminal identified (upper connection to load) **B1** [1]
 - (ii) $V_P = \sqrt{2} \times V_{RMS}$ C1 ratio = 240 $\sqrt{2} / 9$ C1 = 38 [3]

Α1 $(V_P = V_{RMS} / \sqrt{2} \text{ gives ratio} = 18.9 \text{ and scores } 1/3)$

(ratio = 240 / 9 = 26.7 scores 1/3)

(ratio = 9 / (240 / $\sqrt{2}$) = 0.0265 is inverted ratio and scores 1/3)

- (c) e.g. (output) p.d. / voltage / current does not fall to zero e.g. range of (output) p.d. / voltage / current is reduced (any sensible answer) [1]
 - same peak value at start of discharge M1 (ii) sketch: correct shape between one peak and the next A1 [2]
- (i) connection to 'top' of resistor labelled as positive 2 В1 [1]
 - diode B and diode D B1 [1]
 - **(b) (i)** $V_P = 4.0 \text{ V}$ С mean power = $V_P^2/2R$ C1 $= 4^2 / (2 \times 2700)$ $= 2.96 \times 10^{-3} \text{W}$ [3]
 - (ii) capacitor, correct symbol, connected in parallel with R **B**1 [1]
 - (c) graph: half-wave rectification M1 same period and same peak value **A1** [2]

- 3 (a) (i) peak voltage = 4.0 V
 - (ii) r.m.s. voltage (= $4.0/\sqrt{2}$) = 2.8 V A1 [1]
 - (iii) period T = 20 ms M1 frequency = 1 / (20 × 10⁻³) M1 frequency = 50 Hz A0 [2]
 - **(b)** (i) change = 4.0 2.4 = 1.6 V A1 [1]
 - (ii) $\Delta Q = C\Delta V$ or Q = CV= $5.0 \times 10^{-6} \times 1.6 = 8.0 \times 10^{-6} C$ C1 A1 [2]
 - (c) average p.d. = 3.2 V C1 resistance = $3.2 / (1.1 \times 10^{-3})$ = 2900Ω (allow 2800Ω) A1 [2]

- 4 (a) supply connected correctly (to left & right) B1 load connected correctly (to top & bottom) B1 [2]
 - (b) e.g. power supplied on every half-cycle
 greater average/mean power
 (any sensible suggestion, 1 mark)

 B1 [1]
 - (c) (i) reduction in the variation of the output voltage/current B1 [1]
 - (ii) larger capacitance produces more smoothing

 either product RC larger

 or for the same load

 M1

 A1 [2]

[1]

5	(a	(a e.g. more (output) power available e.g. less ripple for same smoothing capacit any sensible suggestion					
	(b)	(curve showing half-wave rectification	B1	[1]		
		(ii)	similar to (i) but phase shift of 180°	B1	[1]		
	(c)	(i)	correct symbol, connected in parallel with R	B1	[1]		
		(ii)	larger capacitor / second capacitor in parallel with R (not increase <i>R</i>)		[1]		
			2 same peak values		[2]		
				[Total	: 7]		
6	(a)	N _S /I	s. output = $9/\sqrt{2}$ or peak input = $230\sqrt{2}$ $V_P = V_S/V_P$ = $138 \rightarrow 140$ turns	C1 C1 A1 [3]			
	(b)	(i)	four diodes correctly positioned regardless of output polarity giving correct output polarity (all 'point to left')	M1 A1 [2]			
		(ii)	capacitor shown in parallel with R	B1 [1]			
	(c)	(i)	time t_1 to time t_2	B1 [1]			
		(ii)	sketch: same peak values ripple reduced and reasonable shape	M1 A1 [2]			

- single diode......M1 7 (a) [2] (b) (i)1 (i) V = iR(i) [4] (ii) Q = it

8 (a all four diodes correct to give output, regardless of polarity connected for correct polarity A1 [2]

(b)
$$N_S / N_P = V_S / V_P$$
 C1
 $V_0 = \sqrt{2} \times V_{rms}$ C1
ratio = 9.0 / ($\sqrt{2} \times 240$)
= 1/38 or 1/37 or 0.027 A1 [3]

9	(a)	(i) peak voltage = 6√2 peak voltage = 8.48 V			[2]
		(ii)	zero because either no current in circuit (and V = IR) or all p.d. across diode	B1	[1]
	(b)	wave	form: half-wave rectification peak height at about 4.25 cm half-period spacing of 2.0 cm v ±1/4 square for height and half-period)	B1 B1 B1	[3]
	(c)	(i) (ii)	capacitor shown in parallel with resistor either energy = $\frac{1}{2}CV^2$ or = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2} \times 180 \times 10^{-6} \times (6\sqrt{2})^2$ = $6.48 \times 10^{-3} \text{ J}$	B1 C1 C1 A1	[1] [3]
		(iii)	either fraction = 0.43 ² or final energy = 1.2 mJ fraction = 0.18	C1 A1	[2]