Photoelectric Effect & Wave Particle Duality

Question paper 2

Level	International A Level							
Subject	Physics							
Exam Board	CIE							
Topic	Quantum Physics							
Sub Topic	Photoelectric Effect & Wave Particle Duality							
Paper Type	Theory							
Booklet	Question paper 2							

Time Allowed: 90 minutes

Score: /75

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a) By reference to the photoelectric effect, explain
 - (i) what is meant by work function energy,

.....[2]

(ii) why, even when the incident light is monochromatic, the emitted electrons have a range of kinetic energy up to a maximum value.

.....[2

(b) Electromagnetic radiation of frequency f is incident on a metal surface. The variation with frequency f of the maximum kinetic energy $E_{\rm MAX}$ of electrons emitted from the surface is shown in Fig. 7.1.

Fig. 7.1

J [3		n energy =	work function		
[2	at in (i) . for this metal.	unction energy than the rariation with f of $E_{ m MAX}$	s a greater work t line to show the	A second metal h On Fig. 7.1, draw	(ii)
inciden	intensity of the i	do not depend on the	aphs in (i) and (ii	Explain why the gradiation.	(iii)
[2					

(i) Use Fig. 7.1 to determine the work function energy of the metal surface.

Some data for the work function energy and the threshold frequency f_0 of some metal surfaces are given in Fig. 7.1.

metal	$\Phi/10^{-19} J$	$f_0/10^{14}{\rm Hz}$
sodium zinc platinum	3.8 5.8 9.0	5.8 8.8

Fig. 7.1

(a)	(i)	State what is meant by the threshold frequency.
		[2]
	(ii)	Calculate the threshold frequency for platinum.
		threshold frequency =Hz [2]
(b)	300	ctromagnetic radiation having a continuous spectrum of wavelengths between 1 nm and 600 nm is incident, in turn, on each of the metals listed in Fig. 7.1. ermine which metals, if any, will give rise to the emission of electrons.
		[2]
(c)	eled Sta	en light of a particular intensity and frequency is incident on a metal surface, ctrons are emitted. te and explain the effect, if any, on the rate of emission of electrons from this surface light of the same intensity and higher frequency.

3 (a)	igible time delay between illumination of the surface and emission of an electron. three other pieces of evidence provided by the photoelectric effect for the late nature of electromagnetic radiation.				
(b)	It has been observed that, where photoelectric emission of electrons takes place, there is negligible time delay between illumination of the surface and emission of an electron.				
	State three other pieces of evidence provided by the photoelectric effect for the particulate nature of electromagnetic radiation.				
	1				
	2				
	3				
	[3				
(c)	The work function of a metal surface is 3.5 eV. Light of wavelength 450 nm is incident or the surface. Determine whether electrons will be emitted, by the photoelectric effect, from the surface.				

4	(a)	State what is meant by the de Broglie wavelength.
		[2]
(b)	An	electron is accelerated from rest in a vacuum through a potential difference of 4.7kV.
	(i)	Calculate the de Broglie wavelength of the accelerated electron.
		wavelength = m [5]
	(ii)	By reference to your answer in (i), suggest why such electrons may assist with an understanding of crystal structure.
		[2]

- The photoelectric effect may be represented by the equationphoton energy = work function energy + maximum kinetic energy of electron.
- (a) State what is meant by work function energy.

(b) The variation with frequency f of the maximum kinetic energy $E_{\rm K}$ of photoelectrons emitted from the surface of sodium metal is shown in Fig. 7.1.

Fig. 7.1

Use the gradient of the graph of Fig. 7.1 to determine a value for the Planck constant *h*. Show your working.

- (c) The sodium metal in (b) has a work function energy of 2.4 eV. The sodium is replaced by calcium which has a work function energy of 2.9 eV.
 - On Fig. 7.1, draw a line to show the variation with frequency f of the maximum kinetic energy $E_{\rm K}$ of photoelectrons emitted from the surface of calcium. [3]

- 6 An explanation of the photoelectric effect includes the terms photon energy and work function energy.
 - (a) Explain what is meant by

(1)	a prioton,
	[2]
(ii)	work function energy.

(b) In an experiment to investigate the photoelectric effect, a student measures the wavelength λ of the light incident on a metal surface and the maximum kinetic energy E_{max} of the emitted electrons. The variation with E_{max} of $\frac{1}{\lambda}$ is shown in Fig. 7.1.

Fig. 7.1

(i)	The work function energy of the metal surface is Φ . State an equation, in terms of λ , Φ and E_{max} , to represent conservation of energy for the photoelectric effect. Explain any other symbols you use.

(ii	i) Use	your answer in	(i)	and Fig.	7.1	to determine
١	.,	Joan amonton m	۱٠,	a		

1. the work function energy Φ of the metal surface,

2. a value for the Planck constant.

CHEMISTRY ONLINE

Exp	erim	ents are con	ducted to inv	estigate the	photoelectric eff	ect.		
(a)	It is found that, on exposure of a metal surface to light, either electrons are emitted immediately or they are not emitted at all.							
	Sug	gest why thi	s observatio	n does not s	upport a wave th	eory of light.		
	••••							
(b)				he radiation		netal surface and t		
				λ/nm	E _K /10 ⁻¹⁹ J			
				650 240	_ 4.44			
				Fiç	j. 7.1			
	(i)	Without an wavelength		n, suggest v	vhy no value is	given for $E_{\rm K}$ for	radiation of	
	(:: \		C: 7.4.t				_	
	(ii)	Use data in	om Fig. 7.1 t	o determine	the work function	n energy of the su	ігтасе.	
				work function	on onorgy		1 101	
				WOIK IUNCTIO	nrenergy =		ა [ა]	

7

(c)	Radiation of wavelength 240 nm gives rise to a maximum photoelectric current I . The intensity of the incident radiation is maintained constant and the wavelength is now reduced.						
	Stat	te and explain the effect of this change on					
	(i)	the maximum kinetic energy of the photoelectrons,					
		[2]					
	(ii)	the maximum photoelectric current <i>I</i> .					
		[2]					

	8	(a) State what is meant by the <i>de Broglie wavelength</i> .										
(b)	An	electro	on is ac	celerated	in a vacuu	ım fron	n rest thr	ough a p	otential d	ifference o	of 850	١V.
	(i)	Show	that th	e final mo	omentum o	of the e	electron is	s 1.6 × 10) ^{–23} Ns.			
	(ii)	Calcu	ulate the	e de Brog	lie wavele	ngth of	this elec	etron.				[2]
						wave	length =			TE.	m	[2]

(c)	Describe an experiment to demonstrate the wave nature of electrons. You may draw a diagram if you wish.										
	[5]										