Photoelectric Effect & Wave Particle Duality

Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Quantum Physics
Sub Topic	Photoelectric Effect & Wave Particle Duality
Paper Type	Theory
Booklet	Question paper 3

Time Allowed: 62 minutes

Score: /51

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

	(a) By reference to the photoelectric effect, state what is meant by the threshold frequency
	[2]
(b)	The surface of a zinc plate has a work function of $5.8 \times 10^{-19} \mathrm{J}$. In a particular laboratory experiment, ultraviolet light of wavelength 120 nm is incident on the zinc plate. A photoelectric current I is detected. In order to view the apparatus more clearly, a second lamp emitting light of wavelength 450 nm is switched on. No change is made to the ultraviolet lamp.
	Using appropriate calculations, state and explain the effect on the photoelectric current of switching on this second lamp.
	[4]

2	(a)	Explain why, for the photoelectric effect, the existence of a threshold frequency and a very short emission time provide evidence for the particulate nature of electromagnetic radiation, as opposed to a wave theory.				
	(b)	State and explain two relations in which the Planck constant h is the constant of				
	(D)	State and explain two relations in which the Planck constant <i>h</i> is the constant of proportionality.				
		1				
		2				
		[61				

(a)	(i)		is meant by a <i>phot</i>			
						[1]
	(ii)	Show that th	e photon energy of	light of wavelength 350	nm is 5.68 10 ^{–19} J.	[1]
((iii)	State the val	ue of the ratio			
				ght of wavelength 700 n ght of wavelength 350 n		
					ratio =	[1]
(b)				have similar intensities. ne other beam has wave		ım has
			are incident separa of these surfaces is	ately on three different shown in Fig. 5.1.	t metal surfaces. The	e work
			metal	work function / eV	TATE	
			tungsten magnesium potassium	4.49 3.68 2.26	LIND	
			F	ig. 5.1	_	
	(i)	Explain what	is meant by the wo	ork function of the surface	ce.	

.....[2]

(a)		on energy = work function energy + maximum kinetic energy of emitted electrons.
(a)	-	
	(i)	what is meant by a <i>photon</i> ,
		[2
	(ii)	why most electrons are emitted with kinetic energy less than the maximum.
		[2
h۱	liak	st of constant intensity is incident on a motal curface, equaing electrons to be
(b)		nt of constant intensity is incident on a metal surface, causing electrons to be tted.
(b)	emi	tted.
(b)	emi Sta	nt of constant intensity is incident on a metal surface, causing electrons to be tted. te and explain why the rate of emission of electrons changes as the frequency of the dent light is increased.
(b)	emi Sta	tted. te and explain why the rate of emission of electrons changes as the frequency of the
(b)	emi Sta	tted. te and explain why the rate of emission of electrons changes as the frequency of the dent light is increased.
(b)	emi Sta	te and explain why the rate of emission of electrons changes as the frequency of the dent light is increased.
(b)	emi Sta	tted. te and explain why the rate of emission of electrons changes as the frequency of the dent light is increased.
(b)	emi Sta	te and explain why the rate of emission of electrons changes as the frequency of the dent light is increased.

A parallel beam of electrons, all travelling at the same speed, is incident normally on a carbon film. The scattering of the electrons by the film is observed on a fluorescent screen, as illustrated in Fig. 7.1.

	vacuum
	Fig. 7.1
(a)	Assuming that the electrons behave as particles , predict what would be seen on the screen.
	[1]
(b)	In this experiment, the electrons do not behave as particles.
	Describe briefly the pattern that is actually observed on the screen. You may draw a sketch if you wish.

(c)	The speed of the electrons is gradually increased.				
	State and explain what change, if any, is observed in the pattern on the screen.				
	[3]				

6	(a)	State the de Broglie relation, explaining any symbols you use.
		[2]

(b) An electron of mass m has kinetic energy E. Show that the de Broglie wavelength λ of this electron is given by

$$\lambda = \frac{h}{\sqrt{2mE}}.$$

[2]

(c) Calculate the potential difference through which an electron, initially at rest, must be accelerated so that its de Broglie wavelength is equal to 0.40 nm (the diameter of an atom).

CHEMISTRY ONLINE

potential difference = V [3]

7 (a)	Exp	Explain what is meant by a <i>photon</i> of electromagnetic radiation.				
		[2				
(b)	The photoelectric effect provides evidence for the particulate nature of electromagnetic radiation. State three experimental observations that support this conclusion.					
	1.					
	2.					
	3.	[3				
(c)	sur	ctromagnetic radiation of wavelength λ and intensity I , when incident on a metaface, causes n electrons to be ejected per unit time. The maximum kinetic energy of electrons is E_{\max} .				
	Sta	te and explain the effect, if any, on n and E_{\max} when				
	(i)	the intensity is reduced to $\frac{1}{2}$ I but the wavelength λ is unchanged,				
		CITEMICTRY ONLI INTE				
	(ii)	the wavelength λ is reduced but the intensity I is not changed.				
		[4				