Photoelectric Effect & Wave Particle Duality

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Quantum Physics
Sub Topic	Photoelectric Effect & Wave Particle Duality
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:		65 minute	65 minutes				
Score:		/54	/54				
Percentage:		/100					
A*	A	В	С	D	E	U	
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%	

1	(a	(i)	$p = h/\lambda$ = (6.63 × 10 ⁻³⁴)/(6.50 × 10 ⁻¹²) = 1.02 × 10 ⁻²² N s	C A	[2]
		(ii)	$E = hc / \lambda \text{ or } E = pc$ = $(6.63 \times 10^{-34} \times 3.00 \times 10^8) / (6.50 \times 10^{-12})$ = $3.06 \times 10^{-14} \text{ J}$	C A	[2]
	(b)	($0.34 \times 10^{-12} = (6.63 \times 10^{-34})/(9.11 \times 10^{-31} \times 3.0 \times 10^8) \times (1 - \cos \theta)$ $\theta = 30.7^{\circ}$	C A1	[2]
		(ii)	deflected electron has energy this energy is derived from the incident photon deflected photon has less energy, longer wavelength (so $\Delta \lambda$ always positive)	M1 A1 B1	[3]
2	2	(a)	packet/quantum/discrete amount of energy of electromagnetic energy/radiation/waves	M1 A1	[2]
		(b)	(i) arrow below axis and pointing to right	B1	[1]
		(ii)	1. $E = hc/\lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(6.80 \times 10^{-12})$ = 2.93×10^{-14} J (accept 2 s.f.)	C1 A1	[2]
			2. energy of electron = $(3.06 - 2.93) \times 10^{-14}$ = 1.3×10^{-15} J	C1	
			speed = $\sqrt{(2E/m)}$	C1	
			$= 5.4 \times 10^7 \mathrm{m s^{-1}}$	A1	[3]
	(c)	mo	omentum is a vector quantity	B1	
		eit or	her must consider momentum in two directions direction changes so cannot just consider magnitude	B1	[2]
		01	anovien enangee ee cannot just contender magnitude		[-]

3	(a)	discrete amount/packet/quantum of <u>energy</u> of electromagnetic radiation/EM radiation	r	M1 A1	[2]
	(b)	(i) $E = hc/\lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^8)/(570 \times 10^{-9}) = 3.49 \times 10^{-19} \text{ J}$		A	[1]
		(ii) number = $(2.7 \times 10^{-3})/(3.5 \times 10^{-19})$ = 7.7×10^{15}	(C A1	[2]
		2. momentum of photon $= h/\lambda$	(C1	
		= $(6.63 \times 10^{-34})/(570 \times 10^{-5})$ = $1.16 \times 10^{-27} \text{ kg m s}^{-1}$	(C1	
		change in momentum = $1.16 \times 10^{-27} \times 7.7 \times 10^{15}$ = 8.96×10^{-12} kg m s ⁻¹		A1	[3]
		(allow $E = pc$ route to 9×10^{-12})			
	(c)	pressure = (change in momentum per second)/area = $(8.96 \times 10^{-12})/(1.3 \times 10^{-5})$ = 6.9×10^{-7} Pa	,	A1	[2]
4	(a	e.g. no time delay between illumination and emission max. (kinetic) energy of electron dependent on frequency max. (kinetic) energy of electron independent of intensity rate of emission of electrons dependent on/proportional to intensity (<i>any three separate statements, one mark each, maximum 3</i>)		В3	[3]
	(b)	(i) (photon) interaction with electron may be below surface energy required to bring electron to surface		B1 B1	[2]
	(ii)	1. threshold frequency = 5.8×10^{14} Hz	A1	[1]	
		$2. \ \Phi = hf_0$			
		= $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ = 3.84×10^{-19} (J)	C1		
		= $(3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ = 2.4 eV	A1	[3]	
		or			
		$hf = \Phi + E_{MAX}$	(C1)	
		chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV $\Phi = 2.4 \text{ eV}$	(C1 (A1))	

asherrana@chemistryonlinetution.com

5	(a	photon energy = hc/λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^8)/(590 \times 10^{-9})$ = 3.37×10^{-19} J	C C	
		number = $(3.2 \times 10^{-3})/(3.37 \times 10^{-19})$ = 9.5×10^{15} (allow 9.4×10^{15})	A	[3]
	(b)	(i) $p = h/\lambda$	C1	
		$= (6.63 \times 10^{-34}) / (590 \times 10^{-3}) = 1.12 \times 10^{-27} \mathrm{kg m s^{-1}}$	C1	
		total momentum = $9.5 \times 10^{15} \times 1.12 \times 10^{-27}$ = $1.06 \times 10^{-11} \text{ kg m s}^{-1}$	A1	[3]
		(ii) force = 1.06×10^{-11} N	A1	[1]
6	(a	<i>either</i> if light passes through suitable film / cork dust etc. diffraction occurs and similar pattern observed <i>or</i> concentric circles are evidence of diffraction diffraction is a wave property	M1 A1 (M1) (A1)	[2]
	(b)	(speed increases so) momentum increases $\lambda = h/p$ so λ decreases hence radii decrease (special case: wavelength decreases so radii decreases – scores 1/3) or (speed increases so) energy increases	M1 M1 A1 (B1)	[3]
		$\lambda = h / \sqrt{(2Em)}$ so λ decreases hence radii decrease	(M1) (A1)	
	(c)	electron and proton have same (kinetic) energy either $E = p^2 / 2m$ or $p = \sqrt{(2Em)}$ ratio = $p_e / p_p = \sqrt{(m_e / m_p)}$ = $\sqrt{J(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})}$	C1 C C	
		$= 2.3 \times 10^{-2}$	A1	[4]