Photoelectric Effect & Wave Particle Duality

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Quantum Physics
Sub Topic	Photoelectric Effect & Wave Particle Duality
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:		90 minute	90 minutes							
Score:		/75	/75							
Percentage:		/100								
Δ*	Δ	B	C	D	F					
7	7	D	C	U	L	0				
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%				

1	(a) (i	i) n	ninimum photon energy	B1		
		n	ninimum energy to remove an electron (from the surface)	B1	[2]	
	(11) e 0	aither maximum KE is photon energy - work function energy max KE when electron ejected from the surface	B1		
	e tł	energies lower than max because energy required to bring electron to he surface	B1	[2]		
	(b) (i	i) tł w	hreshold frequency= 1.0×10^{15} Hz (allow ±0.05 × 10 ¹⁵) vork function energy = h_0 $\therefore 663 \times 10^{-34} \times 10 \times 10^{15}$	C1 C1		
		(a tl	$= 6.63 \times 10^{-19} \text{ J}$ allow alternative approaches based on use of co-ordinates of points on the line)	A1	[3]	
	(ii) s	sketch: straight line with same gradient displaced to right	M1 A1	[2]	
	(iii) ir ir	ntensity determines number of photons arriving per unit time ntensity determines number of electrons per unit time (not energy)	B1 B1	[2]	
2	(a	(i)	lowest frequency of e.m. radiation		M1 A1	[2]
		(ii)	F = hf		C1	[-]
		(")	threshold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = 1.4×10^{15} Hz		01	[2]
	(b)	eitl or	her $300 \text{ nm} \equiv 10 \times 10^{15} \text{ Hz}$ (and $600 \text{ nm} \equiv 5.0 \times 10^{14} \text{ Hz}$) $300 \text{ nm} \equiv 6.6 \times 10^{-19} \text{ J}$ (and $600 \text{ nm} \equiv 3.3 \times 10^{-19} \text{ J}$)			
		<i>or</i> em	zinc $\lambda_0 = 340$ nm, platinum $\lambda_0 = 220$ nm (and sodium $\lambda_0 = 520$ nm) nission from sodium and zinc		M1 A1	[2]
	(c)	eao few few	ch photon has larger energy ver photons per unit time ver electrons emitted per unit time		M1 M1 A1	[3]

3	(a	discrete quantity/packet/quantum of energy of electromagnetic radiation energy of photon = Planck constant × frequency				B1 B1	[2]
	(b)	threshold frequency(1)rate of emission is proportional to intensity(1)max. kinetic energy of electron dependent on frequency(1)max. kinetic energy independent of intensity(1)(any three, 1 each, max 3)(1)			(1) (1) (1) (1)	В3	[3]
	(c)	either $\lambda = 45$ energ 2.8 eV or wo thresh 450 m 6.67 >	$E = hc/\lambda$ 50 nm to give $y = 4.4 \times 10^{-19}$ or 2.8 eV Y < 3.5 eV so no emission Fk function = 3.5 eV hold frequency = 8.45 × 10^{14} Hz $m = 6.67 \times 10^{14} Hz$ $x = 10^{14} Hz < 8.45 \times 10^{14} Hz$	or $hc/\lambda = eV$ work function of $3.5 eV$ to give $\lambda = 355 \text{ nm}$ 355 nm < 450 nm so no		C1 A1 C1 M1	[3]
4	(a (k	a wav that	velength associated with a partic is moving kinetic energy = 1.6 × 10 ⁻¹⁹ × 4	cle 700		M1 A1 C1	[2]
			$= 7.52 \times 10^{-10} \text{ J}$ either energy = $p^2/2m \text{ or } E_{\text{K}} = 1$ $p = \sqrt{(7.52 \times 10^{-16} \times 2 \times 9.1 \times 10^{-23} \text{ Ns})}$ $= 3.7 \times 10^{-23} \text{ Ns}$ $\lambda = h/p$	⁄₂mv² and p = mv 10 ^{−31})		C1 C1 C1	
			= $(6.63 \times 10^{-34}) / (3.7 \times 10^{-23})$ = $1.8 \times 10^{-11} \text{ m}$			A1	[5]
		(ii)	wavelength is about separation can be used in (electron) diffra	n of atoms ction		B1 B1	[2]

5	(a	min	imum energy to remove an electron from the metal/surface B1		[1]
	(b)	gra h = =	dient = 4.17×10^{-15} (allow $4.1 \rightarrow 4.3$) $4.15 \times 10^{-15} \times 1.6 \times 10^{-19}$ or $h = 4.1$ to 4.3×10^{-15} eV s 6.6×10^{-34} J s A1		[2]
	(c)	gra	ch: straight line parallel to given line with intercept at any higher frequency B1 intercept at between 6.9 × 10 ¹⁴ Hz and 7.1 × 10 ¹⁴ Hz B1		[3]
6	(a	(i)	packet/quantum of energy of electromagnetic radiation	M1 A1	[2]
		(ii)	minimum energy to cause emission of an electron (from surface)	B1	[1]
	(b)	(i)	$hc/\lambda = \Phi + E_{max}$ c and h explained	M1 A1	[2]
		(ii)	1. either when $1/\lambda = 0$, $\Phi = -E_{max}$ or evidence of use of x-axis intercept from graph or chooses point close to the line and substitutes values of $1/\lambda$ and E_{max} into $hc/\lambda = \Phi + E_{max}$ $\Phi = 4.0 \times 10^{-19} \text{ J}$ (allow $\pm 0.2 \times 10^{-19} \text{ J}$)	C1 A1	[2]
			2. either gradient of graph is $1/hc$ gradient = $4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$ $h = 1/(\text{gradient} \times 3.0 \times 10^8)$	C1 M1	
			or chooses point close to the line and substitutes values of $1/\lambda$ and E_{max} into $hc/\lambda = \Phi + E_{\text{max}}$ values of $1/\lambda$ and E_{max} are correct within half a square $h = 6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ (Allow full credit for the correct use of any appropriate method) (Do not allow 'circular' calculations in part 2 that lead to the same value of Planck constant that was substituted in part 1)	(C1) (M1) (A1)	[3]

7	(a)	for for	a wave, electron can 'collect' energy continuously	B1	
		ele afte	ctron will be emitted at all frequencies er a sufficiently long delay	M1 A1	[3]
	(b)	(<i>either</i> wavelength is longer than threshold wavelength <i>or</i> frequency is below the threshold frequency <i>or</i> photon energy is less than work function	B1	[1]
		(ii)	$hc / \lambda = \phi + E_{MAX}$ $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (240 \times 10^{-9}) = \phi + 4.44 \times 10^{-19}$ $\phi = 3.8 \times 10^{-19} \text{ J} (allow 3.9 \times 10^{-19} \text{ J})$	C1 C1	[3]
	(c)	(photon energy larger so (maximum) kinetic energy is larger	M1 A1	[2]
		(ii)	fewer photons (per unit time) so (maximum) current is smaller	M1 A1	[2]
8	(a)	wa\	velength of wave associated with a particle	M1	[0]
		ula	t is moving	AI	[2]
	(b)	(i)	energy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J energy = $p^2 / 2m$ or $p = mv$ and $E_{\rm K} = \frac{1}{2}mv^2$	M1	
			momentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6 × 10 ⁻²³ Ns	M1 A0	[2]
		(ii)	$\lambda = h / p$	C1	
			$= 4.1 \times 10^{-11} \mathrm{m}$	A1	[2]
	(c)	diag elec inci fluo pati	gram or description showing: ctron beam in a vacuum ident on <u>thin</u> metal target / carbon <u>film</u> prescent screen tern of concentric rings observed tern similar to diffraction pattern observed with visible light	B1 B1 B1 M1 A1	[5]