Photoelectric Effect & Wave Particle Duality

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Quantum Physics
Sub Topic	Photoelectric Effect & Wave Particle Duality
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed: Score:		62 minute	62 minutes				
		/51	/51				
Percentage:		/100 STRY ONLINE					
A*	А	В	С	D	E	U	
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%	

1	(a	minimum frequency for electron to be emitted (from surface) of electromagnetic radiation / light / photons	M1 A1	[2]
	(b)	$E = hc / \lambda or E = hf \text{ and } c = f\lambda$ either threshold wavelength = $(6.63 \times 10^{-34} \times 3.0 \times 10^8) / (5.8 \times 10^{-19})$ = 340 nm or energy of 340 nm photon = 4.4×10^{-19} J or threshold frequency = 8.7×10^{14} Hz	C1	
		or 450 nm \rightarrow 6.7 × 10 ¹⁴ Hz appropriate comment comparing wavelengths / energies / frequencies so no effect on photo-electric current	A1 B1 B1	[4]

2	(a)	wave theory predicts any frequency would give rise to emission of electron if exposure time is sufficiently long photon has (specific value of) energy dependent on frequency emission if energy greater than threshold / work function / energy to remove	M1 A1 M1	
		electron from surface	A1	[4]
	(b)	photon is packet/quantum of energy of electromagnetic radiation (photon) energy = $h \times$ frequency	M1 A1 B1	[3]
		every <u>particle</u> has an (associated) wavelength wavelength = h / p where p is the momentum (of the particle)	B1 M1 A1	[3]

3	3 (a)	(i)	packeVdiscrete quantity/quantum (of energy) of e.m. radiation	B1	[1]
		(ii)	either $E = (6.63 \times 10^{-34} \times 3 \times 10^{8})(350 \times 10^{-9})$ or $E = (6.63 \times 10^{-34} \times 8.57 \times 10^{14})$ $E = 5.68 \times 10^{-19} \text{ J}$	M1 AO	[1]
		(iii)	0.5	B1	[1]
	(b)	(i) (ii)	energy of photon to cause emission of electron from surface <i>either</i> with zero k.e <i>or</i> photon energy is minimum correct conversion eV � J or J � eV seen once photon energy must be greater than work function 350 nm wavelength and potassium metal	M1 A1 B1 C1 A1	[2] [3]
4	(a) (b)	(i) (ii) at hi so ra (allo	quantum/packet/discrete amount of energy electromagnetic mentioned max. k.e. corresponds to electron emitted from surface energy is required to bring electron to surface gher frequency, fewer photons (per second) for same intensity ate of emission decreases w argument based on photoelectric efficiency)	M1 A1 B1 B1 M1 A1	[2] [2] [2]

<u>CHEMISTRY ONLINE</u> — TUITION —

5	(a	'uniform' distribution	B1	[1]
	(b)	concentric rings	B1	[1]
	(c)	higher speed, more momentum $\lambda = h/p$ so λ decreases and ring diameter decreases	M1 M1 A1	[3]

(a	$\lambda = h/p \text{ or } \lambda = h/mv$ with λ , <i>h</i> and (or mv) p identified	M1 A1	[2]
(b)	$E = \frac{1}{2} mv^{2}$ = $p^{2}/2m$ or $v = \sqrt{(2E/m)}$, <u>hence</u> $\lambda = h/\sqrt{(2mE)}$	C1 M1 A0	[2]
(c)	E = qV (0.4 x 10 ⁻⁹) ² x 2 x 9.11 x 10 ⁻³¹ x 1.6 x 10 ⁻¹⁹ x V = (6.63 x 10 ⁻³⁴) ² V = 9.4 V (2 s.f. scores 2/3)	C1 C1 A1	[3]

$(0.4 \times 10^{-9})^2 \times 2 \times 9.11 \times 10^{-31} \times 1$.6 x 10 ⁻¹⁹ x
V = 9.4 V (2 s.f. scores 2/3)	

7	(a)		packet/quantum of energyM1 energy = <i>hf</i> A1	[2]
	(b)		e.g. threshold frequency outlined max. k.e. independent of intensity max. k.e. dependent on frequency (n.b. NOT proportional) photoelectric current depends on intensity	
			instantaneous emission (<i>1 each, max 3</i>)B3	[3]
	(c)	(i)	photons have same energy so E_{max} unchanged intensity <i>OR</i> number of photons per unit time is halved.	
			so $\frac{1}{2}n \ OR \ n$ reduced	
		(ii)	photons have higher energy so <i>E</i> _{max} increases	
			but fewer photons per unit time so <i>n</i> decreases	[4]

6