Atomic Spectra & Band Theory Mark Scheme

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Quantum Physics
Sub Topic	Atomic Spectra & Band Theory
Paper Type	Theory
Booklet	Mark Scheme

Time Allowed:	76 minutes			
Score:	/63			
Percentage:	/100			

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	photon 'absorbed' by electron photon has energy equal to difference in energy of two energy levels electron de-excites emitting photon (of same energy) in any direction	B1 B1 B1	[3]
	(b)	$ \begin{array}{l} E &= hc / \lambda \\ &= (6.63 \times 10^{-34} \times 3 \times 10^8) / (435 \times 10^{-9}) \\ &= 4.57 \times 10^{-19} \text{ J} (allow 2 \text{ s.f.}) \\ &= (4.57 \times 10^{-19}) / (1.6 \times 10^{-19}) (eV) \end{array} $	C1 C C	
		$= (4.07 \times 10^{-7})^{7} (1.0 \times 10^{-7})^{7} (0.07)$ = 2.86 eV (allow 2 s.f.)	А	[4]
		(ii) arrow pointing in either direction between -3.41 eV and -0.55 eV	В	[1]
2	(a	each wavelength is associated with a discrete <u>change</u> in energy discrete energy <u>change</u> / difference implies discrete levels	M´ A´	1 I [2]
	(b)	1. arrow from –0.54 eV to –0.85 eV, labelled L	B	1 [1]
		 arrow from -0.54 eV to -3.4 eV , labelled S (two correct arrows, but only one label - allow 2 marks) (two correct arrows, but no labels - allow 1 mark) 	B´	1 [1]
		(ii) $E = hc / \lambda$ (3.4 - 0.54) × 1.6 × 10 ⁻¹⁹ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / λ $\lambda = 4.35 \times 10^{-7}$ m	C C A	 [3]
	(c)	$-1.50 \rightarrow -3.4 = 1.9 \text{ eV}$ $-0.85 \rightarrow -3.4 = 2.55 \text{ eV}$ (allow 2.6 eV $-0.54 \rightarrow -3.4 = 2.86 \text{ eV}$ (allow 2.9 eV 3 correct, 2 marks with -1 mark for each additional energy		
		2 correct, 1 mark but no marks if any additional energy differences	Bz	2 [2]
3	(a) packet/quantum/discrete amount of energy of electromagnetic radiation (allow 1 mark for 'packet of electromagnetic radiation')	M1 A1	
		energy = Planck constant × frequency (seen here or in b)	B1	[3]
	(b	 each (coloured) line corresponds to one wavelength/frequency energy = Planck constant × frequency 	B1	
		implies specific energy change between energy levels so discrete levels	B1 A0	[2]

4	 (a) each line represents photon of specific energy photon emitted as a result of energy change of electron specific energy changes so discrete levels 						
	(b) (i)	arrow from –0.85 eV level to –1.5 eV level	B´	I [1]			
	(ii)	$\Delta E = hc /\lambda$ = (1.5 - 0.85) × 1.6 × 10 ⁻¹⁹ = 1.04 × 10 ⁻¹⁹ J = (6.62 × 10 ⁻³⁴ × 2.0 × 10 ⁸)/(1.04 × 10 ⁻¹⁹)	C⁄ C∕	1			
		$ = (0.03 \times 10^{-6} \text{ m})^{-6} \text{ m} $	A	[3]			
	(c) spectrum appears as continuous spectrum crossed by dark lines two dark lines electrons in gas absorb photons with energies equal to the excitation energies						
	ligh	t photons re-emitted in all directions	A	1 [4]			
5	(a) (i) e.g. electron / particle diffraction	B1	[1]			
	(i) e.g. photoelectric effect	B1	[1]			
	(b) (i) 6	A1	[1]			
	(ii	change in energy = 4.57×10^{-19} J $\lambda = hc/E$	C1				
		$= (6.63 \times 10^{-7} \times 3.0 \times 10^{-7}) / (4.57 \times 10^{-7})$ $= 4.4 \times 10^{-7} m$	A1	[2]			

6	(a)	ea	ch I	ine corresponds to a (specific) photon energy	B1	
		pn dis	otoi scre	te energy changes so discrete levels	B1 B1	[3]
	(b)	(E	= hc / λ (allow ratio ideas) = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (486 \times 10^{-9})$	C1	
				$= 4.09 \times 10^{-19} \text{ J}$	A1	[2]
		(ii)	fo al	ur transitions to/from – 5.45 \times 10 ⁻¹⁹ J level $\ $	B1 B1	[2]
					[Tota	l: 7]
	7 ((a	e.g (an	'instantaneous' emission (of electrons) threshold frequency below which no emission (max) <u>electron</u> energy dependent on frequency (max) <u>electron</u> energy not dependent on intensity rate of emission (of electrons) depends on intensity <i>y three sensible suggestions, 1 each</i>)	B3 M1	[3]
	((D)		of electromagnetic energy / radiation	A1	[2]
			(ii)	discrete wavelengths mean photons have particular energies energy of photon determined by energy change of (orbital) electron so discrete energy levels	M1 M1 A0	[2]
	((c)	(three energy changes shown correctly arrows 'pointing' in correct direction wavelengths correctly identified	B1 B1 B1	[3]
			(ii)	chooses λ = 486 nm $\Delta E = hc / \lambda$ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / (4.86 × 10 ⁻⁹)	C1 C1	
				$= 4.09 \times 10^{-19} \text{ J}$ (allow 2 s.f.)		[3]

8 (a) E =	$= he I \text{,i} = (6.63 \times 10^{34} \times 3.0 \times 108) / (486 \times 109) \qquad \dots \qquad \\ = 4.09 \times 10^{19} \text{ J} \dots (\text{allow } 2 \text{ sf}) \dots \qquad \dots$	Cl Al	[2]
(b)	energy level drawn at 4.09 \times 10 ¹⁹ J transition 4.09 \times 10 ¹⁹ to zero clear transition 4.09 x 10 ¹⁹ to 3.03 x 10 ¹⁹ clear (-1 for reversed arrows -1 for extra level at 1.06)	в 1 В 1 В 1	[3]

.