Production & Use of X-Rays Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Quantum Physics
Sub Topic	Production & Use of X-Rays
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	89 minutes
Score:	/74
Percentage:	/100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	 (a) change/increase/decrease anode/tube voltage electrons striking <u>anode</u> have changed (kinetic) energy/speed X-ray/photons/beam have different wavelength/frequen 	B1 B1 B1	[3]
	(b) ($I = I_0 e^{-\mu x}$	B1	[1]
	(ii) contrast is difference in degree of blackening (of regions of the image) μ (very) similar so similar absorption of radiation (for same thickness) so contrast	B1 o little	[2]
2	 2 (a) X-ray beam contains many wavelengths aluminium filter absorbs long wavelength X-ray radiation that would be absorbed by the body (and not contribute to the image) (b) CT scan consists of (many) X-ray <u>images</u> of a slice and there are many slices X-ray image is a single exposure (so much) greater exposure with CT scan 	B1 M1 A1 M1 A1 B1 B1	[3]
	 3 (a) series of X-ray images (for one section/slice taken from different angles to give image of the section/slice repeated for many slices to build up three-dimensional image (of whole object) (b) deduction of background from readings division but have 	M ⁴ M ⁴ A1 A1 C1	1 1 [5]
	division by three $P = 5$ Q = 9 R = 7 S = 13	C1	I
	(four correct 2/2, three correct 1/2)	A2	2 [4]

4 (a) X-ray: flat/shadow/2D image regardless of depth of object/depth not indicated	B1 B1	
CT scan: built up from (many) images at different angles image is three-dimensional image can be rotated/viewed at different angles	B1 B1 B1	[5]
(b) (i) $I = I_0 e^{-\mu x}$	C1	
$x = 2.0 \mathrm{mm} (allow 1 s.f.)$	A1	[2]
(ii) for aluminium, $I/I_0 = e^{-0.46 \times 2.4}$ = 0.33	C1	
$= 0.083 \times 0.25$	A1	[2]
(iii) gain/dB = $10 \log(I/I_0)$	С	
= 101g(0.083) = (-) 10.8 dB (allow 2 s.f.) with negative sign	A1 B1	[3]
5 (a) sharpness: how well the edges (of structures) are defined contrast: difference in (degree of) blackening between structures	B1 B1	[2]
(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide beam		
(any two sensible suggestions, 1 each)	B2	[2]
(c) (i) $I = I_0 e^{-\mu x}$ ratio = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65 × 40 ⁻⁵) / (5.00 × 40 ⁻⁴)	C1 C1	
$= (4.65 \times 10^{-7}) / (5.00 \times 10^{-7})$ $= 0.093$	A1	[3]
 (ii) either large difference (in intensities) or ratio much less than 1.0 so good contrast 	M1 A1	[2]
(answer given in (c)(ii) must be consistent with ratio given in (c)(i))		

6	(a) char cha	nging angir	voltage changes energy / speed of <u>electrons</u> og electron energy changes maximum X-ray photon energy	M1 A1	[2]
	(b)	1.	loss of power / energy / intensity	B1	[1]
		2.	intensity changes when beam not parallel decreases when beam is divergent	C1 A1	[2]
	(ii)	rati <i>(va</i>	o = $(\exp \{-2.9 \times 2.5\})$ / $(\exp \{-0.95 \times 6.0\})$ = 0.21 (min. 2 sig. fig.) lues of both lengths incorrect by factor of 10 ⁻² to give ratio of 0.985 scores 1	C1 A1 mark,	[2])

7	X-ray images taken from of one section/slice	different angles/X-rays	directed from differer	nt angles (1)	B1	
	all images in the same	plane		(1)		
	images combined to giv	ve image of section/slice			B1	
	images of successive s	ections/slices combined			B1	
	image formed using a c	computer			B1	
	image formed is 3D ima	age		(1)		
	that can be rotated/vie	wed from different angles	3	(1)		
	(four B-marks plus any	two additional marks)			B2	[6]

8 (a) background reading = 19

(b)	A = 2 B = 5 C = 9 D = 3 (Allow 1 mark if only subtracts background reading)	A1 A1 A1 A1	[4]
(c)	(<i>either</i> 5, 14 <i>or</i> 14, 5 (A+D, B+C or <i>v.v.</i>)	В	[1]

(ii) Three numbers and 'inside' number is 8 (B+D)B1Three numbers and 'outside' numbers are either 2,9 or 9,2 (A,C or v.v.)B[2]

Β1

[1]

(a) (i)	e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations	M1 A1	[2]
(ii)	either wavelength shorter/shortest for greater/greatest acceleration or $\lambda_{\min} = hc/E_{\max}$	D4	
	all electron energy given up in one collision/converted to single photon	B1 B1	[2]
(b) (i)	hardness measures the penetration of the beam greater hardness, greater penetration	C1 A1	[2]
(ii)	controlled by changing the anode voltage higher anode voltage, greater penetration/hardness	C1 A1	[2]
(c)	long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body	B1	[1]
(ii)	(aluminium) filter/metal foil placed in the X-ray beam	B1	[1]
	(a) (i) (ii) (b) (i) (ii) (c) (ii)	 (a) (i) e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations (ii) either wavelength shorter/shortest for greater/greatest acceleration or λ_{min} = hc/E_{max} or minimum wavelength for maximum energy all electron energy given up in one collision/converted to single photon (b) (i) hardness measures the penetration of the beam greater hardness, greater penetration (ii) controlled by changing the anode voltage higher anode voltage, greater penetration/hardness (c) long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body (ii) (aluminium) filter/metal foil placed in the X-ray beam 	 (a) (i) e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations (ii) either wavelength shorter/shortest for greater/greatest acceleration or λ_{min} = hc/ E_{max} or minimum wavelength for maximum energy all electron energy given up in one collision/converted to single photon (b) (i) hardness measures the penetration of the beam greater hardness, greater penetration (ii) controlled by changing the anode voltage higher anode voltage, greater penetration/hardness (c) long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body (ii) (aluminium) filter/metal foil placed in the X-ray beam

