Production \& Use of X-Rays Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Quantum Physics
Sub Topic	Production \& Use of X-Rays
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	89 minutes				
Score:	/74				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) change/increase/decrease anode/tube voltage B1
electrons striking anode have changed (kinetic) energy/speed B1
X-ray/photons/beam have different wavelength/frequen B1
(b) ($\quad I=I_{0} \mathrm{e}^{-\mu x}$ B1(ii) contrast is difference in degree of blackening (of regions of the image)B1μ (very) similar so similar absorption of radiation (for same thickness) so littlecontrast
2 (a) X-ray beam contains many wavelengths B1
aluminium filter absorbs long wavelength X-ray radiation M1
that would be absorbed by the body (and not contribute to the image) A1
(b) CT scan consists of (many) X-ray images of a slice M1
and there are many slices A1
X -ray image is a single exposure B1
(so much) greater exposure with CT scan B1
3 (a) series of X-ray images (for one section/slice M1
taken from different angles M1
to give image of the section/slice A1
repeated for many slices M1
to build up three-dimensional image (of whole object) A1
(b) deduction of background from readings C1C1
$P=5 \quad Q=9 \quad R=7 \quad S=13$
(four correct 2/2, three correct 1/2)A2
(a) X-ray: flat/shadow/2D image B1
regardless of depth of object/depth not indicated B1
CT scan: built up from (many) images at different angles B1
image is three-dimensional B1
image can be rotated/viewed at different angles B1
(b) (i) $\begin{aligned} & I=I_{0} \mathrm{e}^{-\mu x} \\ & 0.25=\mathrm{e}^{-0.69 \mathrm{x}}\end{aligned}$

$$
x=2.0 \mathrm{~mm} \text { (allow } 1 \text { s.f.) }
$$

(ii) for aluminium, $I / I_{0}=\mathrm{e}^{-0.46 \times 2.4}$

$$
=0.33
$$

$$
\text { fraction }=0.33 \times 0.25
$$

$$
=0.083
$$

(iii) gain $/ \mathrm{dB}=10 \lg \left(I / I_{0}\right)$

$$
\begin{align*}
& =10 \lg (0.083) \\
& =(-) 10.8 \mathrm{~dB} \text { (allow } 2 \text { s.f. }) \tag{A1}
\end{align*}
$$

with negative sign

5 (a) sharpness: how well the edges (of structures) are defined
(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide beam large pixel size
(any two sensible suggestions, 1 each)
(c) (i) $I=I_{0} \mathrm{e}^{-\mu x}$

$$
=\left(4.65 \times 10^{-5}\right) /\left(5.00 \times 10^{-4}\right)
$$

$$
=0.093
$$

(ii) either large difference (in intensities)
or ratio much less than 1.0 M1
so good contrast A1
(answer given in (c)(ii) must be consistent with ratio given in (c)(i))
6 (a) changing voltage changes energy / speed of electrons M1
changing electron energy changes maximum X-ray photon energy A1
(b) 1. loss of power / energy / intensity
2. intensity changes when beam not parallel C1
decreases when beam is divergent A1
(ii) ratio $=(\exp \{-2.9 \times 2.5\}) /(\exp \{-0.95 \times 6.0\})$ C1

$$
=0.21 \text { (min. } 2 \text { sig. fig.) }
$$7 X-ray images taken from different angles/X-rays directed from different angles \quad B1of one section/sliceall images in the same planeimages combined to give image of section/slice(1)B1

images of successive sections/slices combined B1
image formed using a computer B1
image formed is 3D imagethat can be rotated/viewed from different angles(1)
(four B-marks plus any two additional marks)
B2 [6]

8
(a) background reading $=19$B1 [1]
(b) $A=2$ A1
$B=5$ A1
C $=9$ A1D $=3$A1(Allow 1 mark if only subtracts background reading)
(c) (either 5,14 or 14,5 (A+D, B+C or v.v.) B
(ii) Three numbers and 'inside' number is 8 ($B+D$) B1Three numbers and 'outside' numbers are either 2,9 or 9,2 (A,C or v.v.)B
9 (a) (i) e.m. radiation produced whenever charged particle is accelerated M1electrons hitting target have distribution of accelerations A1(ii) either wavelength shorter/shortest for greater/greatest accelerationor $\quad \lambda_{\text {min }}=h c / E_{\text {max }}$or minimum wavelength for maximum energy B1all electron energy given up in one collision/converted to single photonB1
(ii) either wavelength shorter/shortest for greater/greatest acceleration all electron energy given up in one collision/converted to single photon
(b) (i) hardness measures the penetration of the beam C1 greater hardness, greater penetration A1
(ii) controlled by changing the anode voltage C 1 higher anode voltage, greater penetration/hardness
A1
(c) long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body B1
(ii) (aluminium) filter/metal foil placed in the X-ray beam B1

