Particle Physics

Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Particle Physics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed: 75 minutes

Score: /62

Percentage: /100

A*	Α	В	С	D	-E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- Uranium-236 $_{92}^{36}$ U) and Uranium-237 ($_{92}^{237}$ U) are both radioactive. Uranium-236 is an α-emitter and Uranium-237 is a β-emitter.
 - (a) Distinguish between an α -particle and a β -particle.

Y		

(b) The grid of Fig. 7.1 shows some proton numbers *Z* on the *x*-axis and the number *N* of neutrons in the nucleus on the *y*-axis.

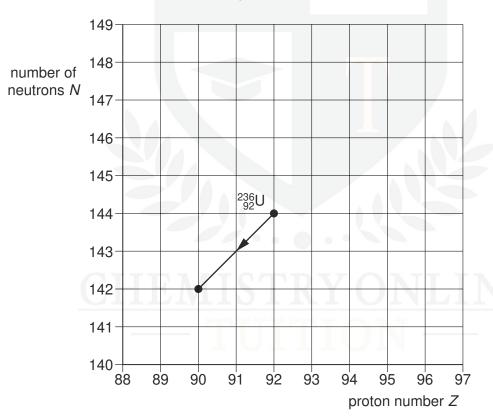


Fig. 7.1

The $\alpha\text{-decay}$ of Uranium-236 $(^{236}_{92}\text{U})$ is represented on the grid. This decay produces a nucleus of thorium (Th).

(i)	Write down the nuclear equation for this α -decay.	

- (ii) On Fig. 7.1, mark the position for a nucleus of
 - 1. Uranium-237 (mark this position with the letter U),
 - 2. Neptunium, the nucleus produced by the β -decay of Uranium-237 (mark this position with the letters Np). [2]

2	(a) l	Evide Sta	ence for the nuclear atom was provided by the $\alpha\text{-particle}$ scattering experiment. te the results of this experiment.
	(b)		e estimates for the diameter of
	(D)	(i)	an atom,
		(ii)	a nucleus.
		(,	[1]

3 The radioactive decay of a strontium (Sr) nucleus is represented in Fig. 7.1.

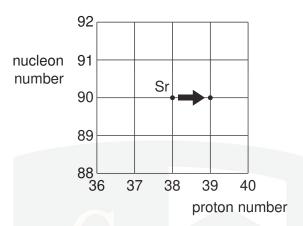
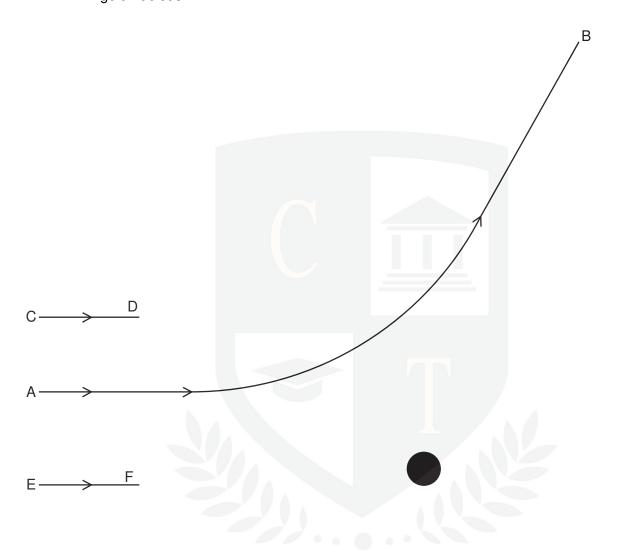


Fig. 7.1

(a)	State whether Fig	. 7.1 repr	esents α -dec	ay, β-decay	or γ -decay.
` '	9			, ,	, ,

		F4 1
 	 	[I J

(b) One type of radioactive decay cannot be represented on Fig. 7.1. Identify this decay and explain why it cannot be represented.


	A

CHEMISTRYONLINE

The	α- pa	article scattering experiment provided evidence for the existence of a nuclear atom.							
(a)	Sta	te what could be deduced from the fact that							
	(i)	most α -particles were deviated through angles of less than 10°,							
		[2]							
	(ii)	a very small proportion of the $\alpha\text{-particles}$ was deviated through angles greater than 90°.							
		[2]							

4

(b) Fig. 7.1 shows the path AB of an α -particle as it approaches and passes by a stationary gold nucleus.

CHEMISTRY ONLINE

Fig. 7.1

On Fig. 7.1, draw lines (one in each case) to complete the paths of the α -particles passing by the gold nucleus when the initial direction of approach is

- (i) along line CD,
- (ii) along line EF.

[3]

One	e isotope of iron may be represented by the symbol
	⁵⁶ ₂₆ Fe.
(a)	State, for one nucleus of this isotope,
	(i) the number of protons,
	number =
	(ii) the number of neutrons.
	number =[2]
(b)	The nucleus of this isotope of iron may be assumed to be a sphere of radius $5.7 \times 10^{-15} \text{m}$.
	Calculate, for one such nucleus,
	(i) the mass,
	(ii) the density. kg

density = $kg m^{-3}$

5

A nucleus of an atom	of francium (Fr) contains 87 protons and 133 neutrons.	
(a) Write down the r	otation for this nuclide.	
	 Fr 	[2]
(b) The nucleus de astatine (At).	ecays by the emission of an $\alpha\text{-particle}$ to become a nucleus	of
Write down a nuc	clear equation to represent this decay.	[2]

- - **(b)** A uniform electric field is produced between two vertical metal plates AB and CD, as shown in Fig. 7.1.

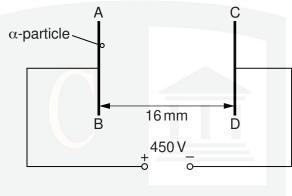
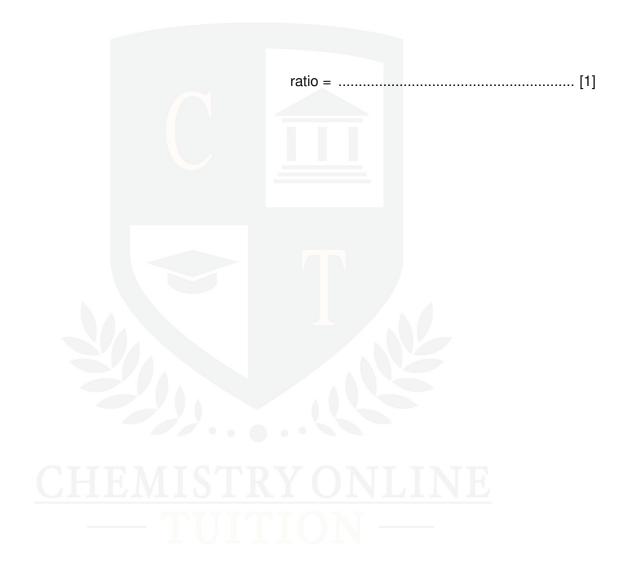


Fig. 7.1

The potential difference between the plates is 450 V and the separation of the plates is 16 mm.

An α -particle is accelerated from plate AB to plate CD.


- (i) On Fig. 7.1, draw lines to represent the electric field between the plates. [2]
- (ii) Calculate the electric field strength between the plates.

(iii) Calculate the work done by the electric field on the α -particle as it moves from AB to CD.

(iv) A β -particle moves from AB to CD. Calculate the ratio

work done by the electric field on the α -particle work done by the electric field on the β -particle.

Show your working.

8 (a) An electric field is set up between two parallel metal plates in a vacuum. The deflection of α -particles as they pass between the plates is shown in Fig. 7.1.

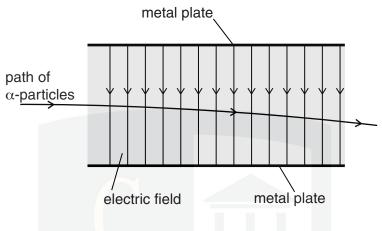


Fig. 7.1

The electric field strength between the plates is reduced. The α -particles are replaced by β -particles. The deflection of β -particles is shown in Fig. 7.2.

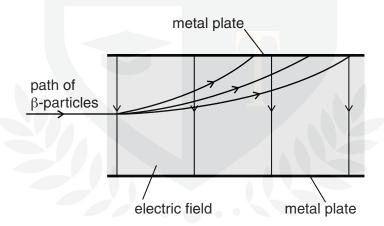


Fig. 7.2

(i)	State one similarity of the electric fields shown in Fig. 7.1 and Fig. 7.2.
	[1
(ii)	The electric field strength in Fig. 7.2 is less than that in Fig. 7.1. State two methods of reducing this electric field strength.
	1
	2

	(iii)	By reference to the properties of α -particles and β -particles, suggest three reasons for the differences in the deflections shown in Fig. 7.1 and Fig. 7.2.				
		1				
		2				
		3				
			[3	 3]		
(b)		ource of α-par articles is repres	ticles is uranium-238. The nuclear reaction for the emission calculated by $ ^{238}_{92} U \rightarrow ^W_{\chi} \! Q + ^Y_{Z} \! \alpha. $	of		
	Stat	e the values of	W X Y			
			2[2	2]		
(c)		ource of β-part	cicles is phosphorus-32. The nuclear reaction for the emission contents is a content of the cont	of		
			$^{32}_{15}P \rightarrow {}^{A}_{B}R + {}^{C}_{D}\beta.$			
	Stat	e the values of	A			
			В			
			C			
			D[1	1]		

9 Two horizontal metal plates are separated by distance *d* in a vacuum. A potential difference *V* is applied across the plates, as shown in Fig. 6.1.

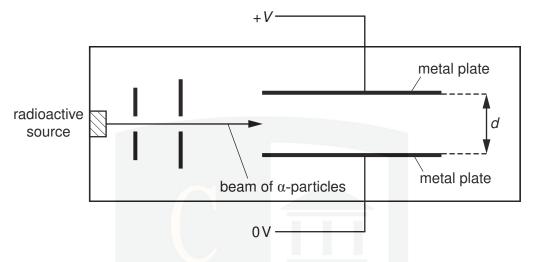


Fig. 6.1

A horizontal beam of α -particles from a radioactive source is made to pass between the plates.

- (a) State and explain the effect on the deflection of the α -particles for each of the following changes:
 - (i) The magnitude of *V* is increased.

 [1]

 (ii) The separation *d* of the plates is decreased.

(b)	Con	source of α -particles is replaced with a source of β -particles. npare, with a reason in each case, the effect of each of the following properties on deflections of α - and β -particles in a uniform electric field:
	(i)	charge
	/::\	[2]
	(ii)	mass
		[2]
	(iii)	speed
(0)	Tho	alectric field gives rice to an ecceleration of the granticles and the granticles
(c)		electric field gives rise to an acceleration of the $\alpha\mbox{-particles}$ and the $\beta\mbox{-particles}$ ermine the ratio
		acceleration of the $\alpha\text{-particles}$.
		ratio =[3]