## **Nuclear Physics**

## Question paper 2

| Level      | International A Level      |
|------------|----------------------------|
| Subject    | Physics                    |
| Exam Board | CIE                        |
| Topic      | Particle & Nuclear Physics |
| Sub Topic  | Nuclear Physics            |
| Paper Type | Theory                     |
| Booklet    | Question paper 2           |

Time Allowed: 78 minutes

Score: /65

Percentage: /100

## CHEMISTRY ONLINE

| A*   | Α      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1   | (a)   | An isotope of an element is radioactive. Explain what is meant by radioactive decay.                                                          |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|     | •••   |                                                                                                                                               |
|     |       |                                                                                                                                               |
|     |       | [3]                                                                                                                                           |
| (b) |       | time $t$ , a sample of a radioactive isotope contains $N$ nuclei. In a short time $\Delta t$ , the number of sclei that decay is $\Delta N$ . |
|     | St    | ate expressions, in terms of the symbols $t$ , $\Delta t$ , $N$ and $\Delta N$ for                                                            |
|     | (i)   | the number of undecayed nuclei at time $(t + \Delta t)$ ,                                                                                     |
|     |       | number =[1]                                                                                                                                   |
|     | (ii)  | the mean activity of the sample during the time interval $\Delta t$ ,                                                                         |
|     |       | mean activity =[1]                                                                                                                            |
|     | (iii) | the probability of decay of a nucleus during the time interval $\Delta t$ ,                                                                   |
|     |       | probability =[1]                                                                                                                              |
|     | (iv)  | the decay constant.                                                                                                                           |
|     |       | decay constant =[1]                                                                                                                           |

Dr. Asher Rana

(c) The variation with time t of the activity A of a sample of a radioactive isotope is shown in Fig. 9.1.

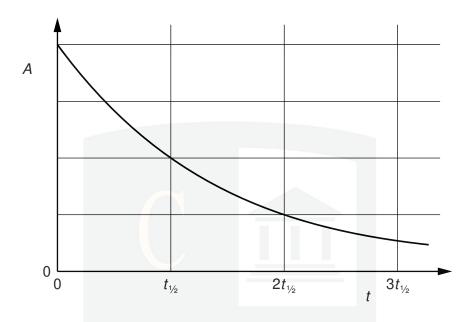



Fig. 9.1

The radioactive isotope decays to form a stable isotope S. At time t = 0, there are no nuclei of S in the sample.

On the axes of Fig. 9.2, sketch a graph to show the variation with time t of the number n of nuclei of S in the sample.

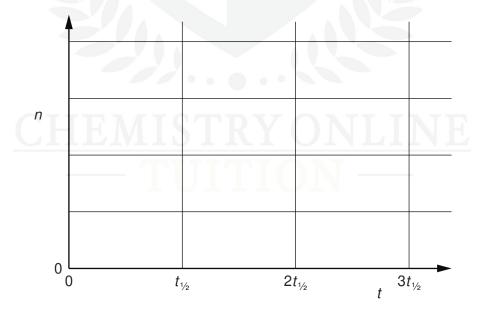



Fig. 9.2

2 The power for a space probe is to be supplied by the energy released when plutonium-236 decays by the emission of  $\alpha$ -particles.

The  $\alpha$ -particles, each of energy 5.75 MeV, are captured and their energy is converted into electrical energy with an efficiency of 24%.

(a) Calculate

(i) the energy, in joules, equal to 5.75 MeV,



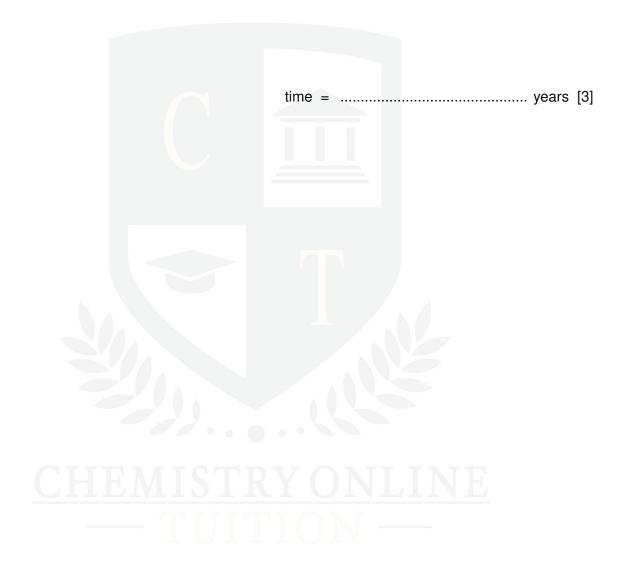
(ii) the number of  $\alpha$ -particles per second required to generate 1.9 kW of electrical power.

number per second = 
$$s^{-1} [2]$$

- (b) Each plutonium-236 nucleus, on disintegration, produces one  $\alpha$ -particle. Plutonium-236 has a half-life of 2.8 years.
  - (i) Calculate the decay constant, in  $s^{-1}$ , of plutonium-236.

$$decay constant = \dots s^{-1} [2]$$

|     | (ii) | Use your answers in <b>(a)(ii)</b> and <b>(b)(i)</b> to determine the mass of plutonium-236 required for the generation of 1.9kW of electrical power. |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      | mass = g [4]                                                                                                                                          |
| (c) | The  | minimum electrical power required for the space probe is 0.84kW.                                                                                      |
|     |      | culate the time, in years, for which the sample of plutonium-236 in <b>(b)(ii)</b> will provide icient power.                                         |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      | time = years [2]                                                                                                                                      |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |
|     |      |                                                                                                                                                       |


|   |                                                                     |                                                                                         |                                                                        | [          |
|---|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|
| ) | In the D-T reaction, helium-4 ( <sup>4</sup> <sub>2</sub> He) nucle | a deuterium $\binom{2}{1}$ H) nucleus. The nuclear equation                             | eus fuses with a tritium $\binom{3}{1}$ H) nucleun for the reaction is | us to form |
|   |                                                                     | $^{2}_{1}\text{H} + ^{3}_{1}\text{H} \rightarrow ^{4}_{2}\text{He}$                     | + <sup>1</sup> <sub>0</sub> n + energy                                 |            |
|   | Some data for this re                                               | eaction are given in Fig.                                                               | 9.1.                                                                   |            |
|   |                                                                     |                                                                                         | mass/u                                                                 |            |
|   |                                                                     | deuterium ( ${}_{1}^{2}$ H)<br>tritium ( ${}_{1}^{3}$ H)<br>helium-4 ( ${}_{2}^{4}$ He) | 2.01356<br>3.01551<br>4.00151                                          |            |
|   |                                                                     | neutron $\binom{1}{0}$ n)                                                               | 1.00867                                                                |            |
|   |                                                                     |                                                                                         |                                                                        |            |
|   |                                                                     | Fig.                                                                                    |                                                                        |            |
|   | <i>(</i> )                                                          | nergy, in MeV, equivalen                                                                | t to 1.00 u. Explain your working.                                     |            |
|   | (i) Calculate the en                                                |                                                                                         |                                                                        |            |
|   | (i) Calculate the en                                                |                                                                                         |                                                                        |            |
|   | (i) Calculate the en                                                |                                                                                         |                                                                        |            |
|   | (i) Calculate the en                                                |                                                                                         |                                                                        |            |
|   | (i) Calculate the en                                                |                                                                                         |                                                                        |            |
|   | (i) Calculate the en                                                | MISTRY<br>TUIT                                                                          | MONLINE  nergy =                                                       | May        |

|  | <br> | <br> |
|--|------|------|
|  | <br> | <br> |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |

| 4 | During the de-commissioning of a nuclear reactor, a mass of $2.5 \times 10^6$ kg of steel is found to be contaminated with radioactive nickel-63 ( $^{63}_{28}$ Ni). |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | The                                                                                                                                                                  | total activity of the steel due to the nickel-63 contamination is $1.7 \times 10^{14}$ Bq.                                                                                                                                                               |  |  |  |  |  |  |
|   | (a)                                                                                                                                                                  | Calculate the activity per unit mass of the steel.                                                                                                                                                                                                       |  |  |  |  |  |  |
|   |                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|   |                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|   |                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|   |                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|   |                                                                                                                                                                      | activity per unit mass = Bqkg <sup>-1</sup> [1]                                                                                                                                                                                                          |  |  |  |  |  |  |
|   | (b)                                                                                                                                                                  | Special storage precautions need to be taken when the activity per unit mass due to contamination exceeds $400Bqkg^{-1}.$ Nickel-63 is a $\beta$ -emitter with a half-life of 92 years. The maximum energy of an emitted $\beta$ -particle is 0.067 MeV. |  |  |  |  |  |  |
|   |                                                                                                                                                                      | (i) Use your answer in (a) to calculate the energy, in J, released per second in a mass of 1.0 kg of steel due to the radioactive decay of the nickel.                                                                                                   |  |  |  |  |  |  |
|   |                                                                                                                                                                      | energy =                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   |                                                                                                                                                                      | (ii) Use your answer in (i) to suggest, with a reason, whether the steel will be at a high temperature.                                                                                                                                                  |  |  |  |  |  |  |
|   |                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |  |  |  |  |  |

.....[1]

(iii) Use your answer in (a) to determine the time interval before special storage precautions for the steel are not required.



| (b | <br><b>)</b> Da | a for the masses of some particles are given in Fig. 10.1.                                                   | [2] |  |  |  |  |  |
|----|-----------------|--------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|    |                 | mass/u                                                                                                       |     |  |  |  |  |  |
|    |                 | proton neutron tritium ( <sup>3</sup> H) nucleus polonium ( <sup>210</sup> Po) nucleus 209.93722             |     |  |  |  |  |  |
|    |                 | Fig. 10.1                                                                                                    |     |  |  |  |  |  |
|    | The             | The energy equivalent of 1.0 u is 930 MeV.                                                                   |     |  |  |  |  |  |
|    | (i)             | Calculate the binding energy, in MeV, of a tritium ( <sup>3</sup> <sub>1</sub> H) nucleus.                   |     |  |  |  |  |  |
|    |                 | binding energy =MeV [                                                                                        | 3   |  |  |  |  |  |
|    | (ii)            | The total mass of the separate nucleons that make up a polonium-210 ( $^{210}_{84}$ Po) nucleus 211.70394 u. | is  |  |  |  |  |  |
|    |                 | Calculate the binding energy per nucleon of polonium-210.                                                    |     |  |  |  |  |  |

| (c) | One | possible | fission | reaction | is |
|-----|-----|----------|---------|----------|----|
|-----|-----|----------|---------|----------|----|

$$^{235}_{92}U \ + \ ^1_0 n \ \rightarrow \ ^{141}_{56} Ba \ + \ ^{92}_{36} Kr \ + \ 3^1_0 n \ .$$

By reference to binding energy, explain, without any calculation, why this fission reaction is energetically possible.

## CHEMISTRY ONLINE — TUITION —

| 6 | The | me water becomes contaminated with radioactive iodine-131 $\binom{131}{53}$ I). e activity of the iodine-131 in 1.0 kg of this water is 460 Bq. e half-life of iodine-131 is 8.1 days. |               |                                              |                     |                |     |  |  |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------|---------------------|----------------|-----|--|--|
|   | (a) | Define radioactive half-life.                                                                                                                                                          |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                | [2] |  |  |
|   | (b) | (i)                                                                                                                                                                                    | Calculate the | number of iodine-13                          | 1 atoms in 1.0 kg o | of this water. |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              | number =            |                | [3  |  |  |
|   |     | (ii)                                                                                                                                                                                   | An amount o   | f 1.0 mol of water has                       | a mass of 18g.      |                |     |  |  |
|   |     |                                                                                                                                                                                        | Calculate the | ratio                                        |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               | number of molecules<br>of atoms of iodine-13 |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              |                     |                |     |  |  |
|   |     |                                                                                                                                                                                        |               |                                              | rotio               |                | ro. |  |  |
|   |     |                                                                                                                                                                                        |               |                                              | ratio =             |                | [2  |  |  |

(c) An acceptable limit for the activity of iodine-131 in water has been set as 170 Bq kg<sup>-1</sup>.

Calculate the time, in days, for the activity of the contaminated water to be reduced to this acceptable level.

| time = | days [3] |
|--------|----------|
|        |          |
|        |          |

7 (a) State what is meant by *nuclear binding energy*.

.....

.....[2]

**(b)** The variation with nucleon number A of the binding energy per nucleon  $B_{\rm E}$  is shown in Fig. 8.1.

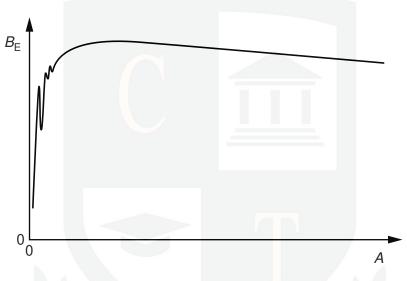



Fig. 8.1

When uranium-235  $\binom{235}{92}$ U) absorbs a slow-moving neutron, one possible nuclear reaction is

$$^{235}_{92}$$
U +  $^{1}_{0}$ n  $\longrightarrow ^{95}_{42}$ Mo +  $^{139}_{57}$ La +  $^{1}_{0}$ n +  $^{1}_{-1}$  $^{0}$  $\beta$  + energy.

(i) State the name of this type of nuclear reaction.

.....[1]

(ii) On Fig. 8.1, mark the position of

1. the uranium-235 nucleus (label this position U), [1]

2. the molybdenum-95 (95/42)Mo) nucleus (label this position Mo), [1]

3. the lanthanum-139  $\binom{139}{57}$ La) nucleus (label this position La). [1]

(iii) The masses of some particles and nuclei are given in Fig. 8.2.

|               | mass/u                 |
|---------------|------------------------|
| β-particle    | 5.5 × 10 <sup>-4</sup> |
| neutron       | 1.009                  |
| proton        | 1.007                  |
| uranium-235   | 235.123                |
| molybdenum-95 | 94.945                 |
| lanthanum-139 | 138.955                |

Fig. 8.2

Calculate, for this reaction,

1. the change, in u, of the rest mass,

2. the energy released, in MeV, to three significant figures.