Nuclear Physics

Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed: 81 minutes

Score: /67

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 One possible nuclear fission reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n + energy.

Barium-141 ($^{141}_{56}$ Ba) and krypton-92 ($^{92}_{36}$ Kr) are both β -emitters. Barium-141 has a half-life of 18 minutes and a decay constant of $6.4 \times 10^{-4} \, \text{s}^{-1}$. The half-life of krypton-92 is 3.0 seconds.

- (a) State what is meant by decay constant.
- **(b)** A mass of 1.2g of uranium-235 undergoes this nuclear reaction in a very short time (a few nanoseconds).
 - (i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed.

(ii) Using your answer in **(b)(i)**, calculate the total activity of the barium-141 and the krypton-92 a time of 1.0 hours after the fission reaction has taken place.

	e nuclear reaction that takes place in the core of the Sun is represented by uation						
cqc	$^{2}_{1}H + ^{1}_{1}H \rightarrow ^{3}_{2}He + energy.$						
Dat	ta for the nuclei are given in Fig. 8.1.						
	mass/u						
	proton ¹ ₁ H 1.00728						
	deuterium ² ₁ H 2.01410						
	helium ³ ₂ He 3.01605						
	Fig. 8.1						
(i)	Calculate the energy, in joules, released in this reaction.						

3	(a) Explain	why the	mass	of a	anα-particle	is	less	than	the	total	mass	of	two	individual
	protons	and two	individ	ıal	neutrons.									

......[2

(b) An equation for one possible nuclear reaction is

$$^4_2\text{He} + ^{14}_7\text{N} \rightarrow ^{17}_8\text{O} + ^1_1\text{p}.$$

Data for the masses of the nuclei are given in Fig. 8.1.

		mass/u
proton	1 ₁ p	1.00728
helium-4	⁴ He	4.00260
nitrogen-14	¹ 4N	14.00307
oxygen-17	¹⁷ ₈ O	16.99913
nitrogen-14	¹ 4 ₇ N	14.00307

Fig. 8.1

(i) Calculate the mass change, in u, associated with this reaction.

CHEMISTRY ONLINE

(ii) Calculate the energy, in J, associated with the mass change in (i).

4 When a neutron is captured by a uranium-235 nucleus, the outcome may be represented by the nuclear equation shown below.

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{95}_{42}$ Mo + $^{139}_{57}$ La + x^{1}_{0} n + 7^{-0}_{-1} e

(a) (i) Use the equation to determine the value of x.

(ii) State the name of the particle represented by the symbol $_{-1}^{0}$ e.

(b) Some data for the nuclei in the reaction are given in Fig. 8.1.

		mass/u	binding energy per nucleon /MeV
uranium-235	(²³⁵ ₉₂ U)	235.123	
molybdenum-9	5 (⁹⁵ ₄₂ Mo)	94.945	8.09
lanthanum-139	(¹³⁹ ₅₇ La)	138.955	7.92
proton	(¹ ₁ p)	1.007	
neutron	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ n)	1.009	

Fig. 8.1

Use data from Fig. 8.1 to

(i) determine the binding energy, in u, of a nucleus of uranium-235,

	(ii)	show that the binding energy per nucleon of a nucleus of uranium-235 is 7.18 MeV.
		[3]
(c)		e kinetic energy of the neutron before the reaction is negligible. e data from (b) to calculate the total energy, in MeV, released in this reaction.
		energy = MeV [2]

5 (a) (i) State what is meant by the *decay constant* of a radioactive isotope.

.....[2

(ii) Show that the decay constant λ and the half-life $t_{\frac{1}{2}}$ of an isotope are related by the expression

$$\lambda t_{\frac{1}{2}} = 0.693.$$

[3]

(b) In order to determine the half-life of a sample of a radioactive isotope, a student measures the count rate near to the sample, as illustrated in Fig. 9.1.

Fig. 9.1

	Use these data to estimate the half-life of	the isotope.					
		half-life = hours [3]					
(c)	The accepted value of the half-life of the isotope in (b) is 5.8 hours. The difference between this value for the half-life and that calculated in (b) cannot be explained by reference to faulty equipment.						
	Suggest two possible reasons for this diffe	erence.					
	1						
	2						
		[2]					

Initially, the measured count rate is 538 per minute. After a time of 8.0 hours, the

measured count rate is 228 per minute.

	e element strontium has at least 16 isotopes. One of these isotopes is strontium-89. This ope has a half-life of 52 days.
(a)	State what is meant by isotopes.
	[2]
(b)	Calculate the probability per second of decay of a nucleus of strontium-89.
	probability =s ⁻¹ [3]
(c)	A laboratory prepares a strontium-89 source. The activity of this source is measured 21 days after preparation of the source and is found to be $7.4\times10^6\mathrm{Bq}$.
	Determine, for the strontium-89 source at the time that it was prepared,
	(i) the activity,
	activity = Bq [2]
	(ii) the mass of strontium-89.

6

	(i)	Define radioactive half-life.
(a)	(.,	
	(ii)	Show that the decay constant of phosphorus-33 is $3.23 \times 10^{-7} \text{s}^{-1}$.
'h\	۸ ۸	ure comple of phosphorus 22 has an initial activity of 2.7 106 Pa
(D)		ure sample of phosphorus-33 has an initial activity of 3.7 × 10 ⁶ Bq.
	Cal	culate
	(i)	the initial number of phosphorus-33 nuclei in the sample,
		number =[

7

(c) After 30 days, the sample in (b) will contain phosphorus-33 and sulfur-33 nuclei. Use your answers in (b) to calculate the ratio

number of phosphorus-33 nuclei after 30 days number of sulfur-33 nuclei after 30 days

ratio =[2]

		22, when found in atmospheric air, can present a health hazard. Safety measur e taken when the activity of radon-222 exceeds 200 Bq per cubic metre of air.	es
(a)	(i)	Define radioactive decay constant.	
	(ii)	Show that the decay constant of radon-222 is 2.1 × 10 ⁻⁶ s ⁻¹ .	[2]
			[1]
(b)	A vo	plume of $1.0 \mathrm{m}^3$ of atmospheric air contains 2.5×10^{25} molecules.	
	Cald	culate the ratio	
		number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air	
	for t	he minimum activity of radon-222 at which safety measures should be taken.	
		ratio =	[3]

Radon-222 is a radioactive element having a half-life of 3.82 days.

8