## **Nuclear Physics**

## Question paper 5

| Level      | International A Level      |
|------------|----------------------------|
| Subject    | Physics                    |
| Exam Board | CIE                        |
| Topic      | Particle & Nuclear Physics |
| Sub Topic  | Nuclear Physics            |
| Paper Type | Theory                     |
| Booklet    | Question paper 5           |

Time Allowed: 78 minutes

Score: /65

Percentage: /100

| A*   | Α      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1   | (a) State what is meant by the <i>decay constant</i> of a radioactive isotope.                        |         |
|-----|-------------------------------------------------------------------------------------------------------|---------|
| (b) | Show that the decay constant $\lambda$ is related to the half-life $t_{rac{1}{2}}$ by the expression | <br>[2] |
|     | $\lambda t_{\frac{1}{2}} = 0.693.$                                                                    |         |
|     |                                                                                                       | [3]     |
| (c) | Cobalt-60 is a radioactive isotope with a half-life of 5.26 years $(1.66 \times 10^8 \text{ s})$ .    |         |
|     | A cobalt-60 source for use in a school laboratory has an activity of $1.8 \times 10^5$ Bq.            |         |
|     | Calculate the mass of cobalt-60 in the source.                                                        |         |
|     |                                                                                                       |         |

mass = ..... g [3]

| (a) A sample of a radioactive isotope contains $N$ nuclei at time $t$ . At time $(t + \Delta t)$ , it contains $(N - \Delta N)$ nuclei of the isotope.                         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| For the period $\Delta t$ , state, in terms of $N$ , $\Delta N$ and $\Delta t$ ,                                                                                               |     |
| (i) the mean activity of the sample,                                                                                                                                           |     |
| activity =[                                                                                                                                                                    | 1]  |
| (ii) the probability of decay of a nucleus.                                                                                                                                    |     |
| probability =[                                                                                                                                                                 | 1]  |
| (b) A cobalt-60 source having a half-life of 5.27 years is calibrated and found to have a activity of $3.50 \times 10^5$ Bq. The uncertainty in the calibration is $\pm 2\%$ . | ιn  |
| Calculate the length of time, in days, after the calibration has been made, for the state activity of $3.50 \times 10^5$ Bq to have a maximum possible error of 10%.           | ed: |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
| time = days [-                                                                                                                                                                 | 4]  |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |
|                                                                                                                                                                                |     |

2

| <b>3</b><br>separat | Two deute           | qum (H) nuclei ar<br>compared with thei | e travelling direct<br>r diameters, the<br>5.1. | ctly towards o<br>y each have s | one another. When their speed $v$ as illustrated in                       | Fig.      |
|---------------------|---------------------|-----------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|-----------|
|                     |                     |                                         |                                                 | _                               | V                                                                         |           |
|                     |                     | $\bigcap$                               |                                                 |                                 |                                                                           |           |
|                     | deuteriu<br>nucleus | m                                       |                                                 |                                 | deuterium nucleus                                                         |           |
|                     |                     |                                         |                                                 |                                 |                                                                           |           |
|                     |                     |                                         | Fig. 5.1                                        |                                 |                                                                           |           |
| The                 | e diameter of       | f a deuterium nucle                     | us is $1.1 \times 10^{-14}$                     | <sup>1</sup> m.                 |                                                                           |           |
| (a)                 |                     | mately $2.5 \times 10^6$ ms             |                                                 |                                 | of the deuterium nuclei<br>ne into contact.                               | must      |
| (b)                 | Assuming            |                                         | aves as an idea                                 | l gas, deduce                   | ome into contact.<br>e a value for the temper<br>equal to the speed calcu |           |
| (c)                 | Comment o           | on your answer to (                     | •                                               | ature =                         |                                                                           | K [4]<br> |

| +   | A positron ( $^0_{+1}$ e) is a particle that has the same mass as an electron and has a charge of $+1.6 \times 10^{-19}$ C. A positron will interact with an electron to form two $\gamma$ -ray photons. |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| , , | ${}^{0}_{+1}e + {}^{0}_{-1}e \rightarrow 2\gamma$                                                                                                                                                        |  |  |  |  |  |
|     | ssuming that the kinetic energy of the positron and the electron is negligible when they teract,                                                                                                         |  |  |  |  |  |
| (a  | ) suggest why the two photons will move off in opposite directions with equal energies,                                                                                                                  |  |  |  |  |  |
|     |                                                                                                                                                                                                          |  |  |  |  |  |
|     |                                                                                                                                                                                                          |  |  |  |  |  |
|     |                                                                                                                                                                                                          |  |  |  |  |  |
|     | [3]                                                                                                                                                                                                      |  |  |  |  |  |
| (b  | ) calculate the energy, in MeV, of one of the γ-ray photons.                                                                                                                                             |  |  |  |  |  |
|     |                                                                                                                                                                                                          |  |  |  |  |  |
|     | energy = MeV [3]                                                                                                                                                                                         |  |  |  |  |  |

**5** (a) Explain what is meant by the *binding energy* of a nucleus.

....

**(b)** Fig. 7.1 shows the variation with nucleon number (mass number) A of the binding energy per nucleon  $E_{\rm B}$  of nuclei.



Fig. 7.1

One particular fission reaction may be represented by the nuclear equation

$$^{235}_{92}$$
U +  $^{1}_{0}$ n  $\rightarrow$   $^{141}_{56}$ Ba +  $^{92}_{36}$ Kr +  $3^{1}_{0}$ n.

- (i) On Fig. 7.1, label the approximate positions of
  - 1. the uranium  $\binom{235}{92}$ U) nucleus with the symbol U,
  - 2. the barium  $\binom{141}{56}$ Ba) nucleus with the symbol Ba,

3. the krypton ( $^{92}_{36}$ Kr) nucleus with the symbol Kr. [2]

(ii) The neutron that is absorbed by the uranium nucleus has very little kinetic energy. Explain why this fission reaction is energetically possible.

.....

.....[2

(c) Barium-141 has a half-life of 18 minutes. The half-life of Krypton-92 is 3.0 s. In the fission reaction of a mass of Uranium-235, equal numbers of barium and krypton nuclei are produced.

Estimate the time taken after the fission of the sample of uranium for the ratio

number of Barium-141 nuclei number of Krypton-92 nuclei

to be approximately equal to 8.

time = .....s [3

| 6 | (a) | Define the <i>decay constant</i> of a radioactive isotope.                                                                      |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------|
|   |     |                                                                                                                                 |
|   |     | [2]                                                                                                                             |
|   | (b) | Strontium-90 is a radioactive isotope having a half-life of 28.0 years. Strontium-90 has a density of $2.54\mathrm{gcm^{-3}}$ . |
|   |     | A sample of Strontium-90 has an activity of 6.4 10 <sup>9</sup> Bq. Calculate                                                   |
|   |     | (i) the decay constant $\lambda$ , in s <sup>-1</sup> , of Strontium-90,                                                        |
|   |     | $\lambda = \dots s^{-1} [2]$                                                                                                    |
|   |     | (ii) the mass of Strontium-90 in the sample,                                                                                    |
|   |     |                                                                                                                                 |
|   |     |                                                                                                                                 |
|   |     | mass = g [4]                                                                                                                    |

|                       |                    | volume =         | Cr |
|-----------------------|--------------------|------------------|----|
| By reference to your  | answer in (b)(iii) | , suggest why du |    |
| vith Strontium-90 pre | sents a serious h  | ealth hazard.    |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |
|                       |                    |                  |    |

(iii) the volume of the sample.

7 Uranium-234 is radioactive and emits  $\alpha$ - particles at what appears to be a constant rate.

A sample of Uranium-234 of mass 2.65 µg is found to have an activity of 604 Bq.

- (a) Calculate, for this sample of Uranium-234,
  - (i) the number of nuclei,



(ii) the decay constant,

(iii) the half-life in years.

| Suggest why a measurement of the mass and the activity of a radioactive isotope is an accurate means of determining its half-life if the half-life is approximately one hou |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |

Fig. 7.1 illustrates the variation with nucleon number A of the binding energy per nucleon E of nuclei.



Fig. 7.1

(a) (i) Explain what is meant by the binding energy of a nucleus.

| <br> |         |
|------|---------|
|      |         |
|      | <br>    |
|      |         |
|      |         |
| <br> | <br>[2] |

(ii) On Fig. 7.1, mark with the letter S the region of the graph representing nuclei having the greatest stability. [1]

**(b)** Uranium-235 may undergo fission when bombarded by a neutron to produce Xenon-142 and Strontium-90 as shown below.

$$^{235}_{92}$$
U +  $^{1}_{0}$ n  $\rightarrow ^{142}_{54}$ Xe +  $^{90}_{38}$ Sr + neutrons

(i) Determine the number of neutrons produced in this fission reaction.

(ii) Data for binding energies per nucleon are given in Fig. 7.2.

| isotope      | binding energy per nucleon<br>/ MeV |  |  |  |
|--------------|-------------------------------------|--|--|--|
| Uranium-235  | 7.59                                |  |  |  |
| Xenon-142    | 8.37                                |  |  |  |
| Strontium-90 | 8.72                                |  |  |  |

Fig. 7.2

| Cal | I   | 1 | I - | 1 -      |
|-----|-----|---|-----|----------|
| 1 7 | וחו |   | 2   | $T \cap$ |
| 10  |     | ш | _   | 15       |

1. the energy, in MeV, released in this fission reaction,

2. the mass equivalent of this energy.