Particle Physics
 Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle \& Nuclear Physics
Sub Topic	Particle Physics
Paper Type	Theory
Booklet	Mark Scheme 3

1 (a α-particle: either helium nucleus or contains 2 protons +2 neutrons

$$
\text { or }{ }_{2}^{4} \mathrm{He}
$$

β-particle: either electron or ${ }_{-1}^{0} \mathrm{e}$
α speed $<\beta$ speed
α discrete values of speed/energy, β continuous spectrum
either α ionising power >> β ionising power
or $\quad \alpha$ range $\ll \beta$ range
α positive, β negative (only if first two B marks not scored)
α mass > β mass (only if first two B marks not scored)
(any two sensible pairs of statements relevant to differences,

- do not allow statements relevant to only α or $\beta, 1$ each, max 2)
(b) (i) ${ }_{92}^{236} \mathrm{U} \rightarrow{ }_{90}^{232} \mathrm{Th}$

$$
+{ }_{2}^{4} \mathrm{He}
$$

(ii) 1. correct position for U at $Z=92, N=145$
2. correct position for Np relative to U i.e. $Z+1$ and $N-1$
(b) (i) ${ }_{92} \rightarrow \quad \begin{gathered}90 \\ \\ +{ }_{9}^{4} \mathrm{He}\end{gathered}$
\square

4 (a) (i) nucleus is small
in comparison to size of atom
A1 [2]
(ii) nucleus is massive/heavy/dense B1
and charged (allow to be scored in (i) or (ii))
B1 [2]
(b) (i) symmetrical path and deviation correct w.r.t. position of nucleus B1
deviation less than in path $A B \quad$ B1
(ii) deviation $>90^{\circ}$ and in correct direction

B1 [3]

5 (a) (i) 26 protons... B1
(ii) 30 neutrons.. B1
[2]
(b) (i) mass $=56 \times 1.66 \times 10^{-27} \ldots \ldots$
(allow $\begin{aligned} & 1.67 \times 10^{-27} \text { but } 0 / 2 \text { for use of } 26 \text { or } 30 \text {) } \\ = & 9.3 \times 10^{-26} \mathrm{~kg} \ldots \ldots . ~\end{aligned} 1$
(ii) density $=$ mass/volume where volume $=4 / 3 \times \pi \times r^{3} \ldots \ldots \ldots \ldots \ldots \ldots .$. C1
$=\left(9.3 \times 10^{-26}\right) /\left(4 / 3 \times \pi \times\left\{5.7 \times 10^{-15}\right\}^{3}\right)$
$=1.2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3} \ldots \ldots \ldots . ~$ 1
(c) $\begin{aligned} & \text { nucleus occupies only very small fraction of volume of atom } \\ & \text { or 'lot of empty space inside atom'.. B1 } \\ & \text { (do not allow spacing between atoms) } \\ & \text { any further good physics e.g. nuclear material is very dense B1 }\end{aligned}$
(c) $\begin{aligned} & \text { nucleus occupies only very small fraction of volume of atom } \\ & \text { or 'lot of empty space inside atom'.. B1 } \\ & \text { (do not allow spacing between atoms) } \\ & \text { any further good physics e.g. nuclear material is very dense B1 }\end{aligned}$
(c) $\begin{aligned} & \text { nucleus occupies only very small fraction of volume of atom } \\ & \text { or 'lot of empty space inside atom'.. B1 } \\ & \text { (do not allow spacing between atoms) } \\ & \text { any further good physics e.g. nuclear material is very dense B1 }\end{aligned}$

6 (a) shows nucleon number as 220 ... B 1
shows proton number as 87 B 1
(b) shows products as He OR \a. ... B 1
and ${ }^{2!}$: At(allowe.c.f.from(a)) B1

7 (a a region/space/area where a (stationary) charge experiences an (electric) force
B1
[1]

B1
consistent direction of an arrow on line(s) from left to right
(ii) electric field strength $E=V / d$

$$
\begin{aligned}
E & =\left(450 / 16 \times 10^{-3}\right) \\
& =28 \times 10^{3}(28125) \vee \mathrm{m}^{-1}
\end{aligned}
$$

(iv) ratio $=\frac{450 \times 3.2 \times 10^{-19}}{450 \times-1.6 \times 10^{-19}}$ (evidence of working required)

$$
=(-) 2
$$

A1

8 (a) (i) the direction of the fields is the same OR fields are uniform OR constant electric field strength OR $E=V / d$ with symbols explained

B1 [1]
(ii) reduce p.d. across plates B1 increase separation of plates B1
(iii) α opposite charge to β (as deflection in opposite direction) B1 β has a range of velocities OR energies (as different deflections) and α all have same velocity OR energy (as constant deflection) B1 α are more massive (as deflection is less for greater field strength) B1

[2]
(c) $A=32$ and $B=16$ and $C=0$ and $D=-1$ B1

9 (a (i) greater deflection MO
greater electric field / force on α-particle A1
(ii) greater deflection M0
greater electric field / force on α-particle
(b) (either deflections in opposite directions M1 because oppositely charged A1
or $\quad \beta$ less deflection (M1) β has smaller charge
(ii) a smaller deflection M1 because larger mass A1
(iii) β less deflection because higher speed
(c) either $F=m a$ and $F=E q$ or $a=E q / m \quad$ C1 $\begin{array}{rlr}\text { ratio }= & \text { either } \frac{\left(2 \times 1.6 \times 10^{-19}\right) \times\left(9.11 \times 10^{-31}\right)}{\left(1.6 \times 10^{-19}\right) \times 4 \times\left(1.67 \times 10^{-27}\right)} \\ & \text { or } \quad[2 e \times 1 / 2000 \mathrm{u}] /[e \times 4 \mathrm{u}]\end{array}$
ratio $=\begin{array}{lllllll} & \text { or } 2.5 & -4 & \text { or } & 2.7 & -4\end{array}$
A1

