Particle Physics Mark Scheme 3

Level	Inter	national A Level	
Subject	Phys	ics	
Exam Board	CIE		
Торіс	Parti	cle & Nuclear Physics	
Sub Topic	Parti	cle Physics	
Paper Type	Theo	ory	
Booklet	Mar	c Scheme 3	

Time Allowed:	75 minutes
Score:	/62
Percentage:	/100

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	α -particle: <i>either</i> helium nucleus <i>or</i> contains 2 protons + 2 neutrons	B1	
		0_{2} ne		
		$\begin{array}{l} \alpha \text{ speed } < \beta \text{ speed} & (1) \\ \alpha \text{ discrete values of speed/energy, } \beta \text{ continuous spectrum} & (1) \\ either & \alpha \text{ ionising power } >> \beta \text{ ionising power} \\ or & \alpha \text{ range } << \beta \text{ range} & (1) \end{array}$	Ы	
		α positive, β negative (only if first two B marks not scored)(1) α mass > β mass (only if first two B marks not scored)(1)(any two sensible pairs of statements relevant to differences,- do not allow statements relevant to only α or β , 1 each, max 2)	B2	[4]
	(b)	(i) $^{236}_{92}$ U $\rightarrow ^{232}_{90}$ Th	M1	
		+ $\frac{4}{2}$ He	A1	[2]
		 (ii) 1. correct position for U at Z = 92, N = 145 2. correct position for Np relative to U i.e. Z + 1 and N - 1 	B1 B1	[2]
2	(a	most α -particles deviated through small angles	B1	
		few α -particles deviated through angles greater than 90°	B1	[2]
	(b)	allow $10^{-9} \text{ m} \rightarrow 10^{-11} \text{ m}$	B1	[1]
		(ii) allow $10^{-13} \text{ m} \rightarrow 10^{-15} \text{ m}$ (<i>if</i> (<i>i</i>) and (<i>ii</i>) out of range but (<i>ii</i>) = 10^{-4} (<i>i</i>), then allow 1 mark) (<i>if</i> no units or wrong units but (<i>ii</i>) = 10^{-4} (<i>i</i>), then allow 1 mark)	B1	[1]
		<u>CHEMISTRY ONLINE</u>		
3	(a	β(-decay) — TUITION —		[1]
	(b)	v(-decav)		
	()	either any two of Z, N and A do not change		
		or it is loss of energy only or it is an electromagnetic wave	B1	[2]
		Allow ' α (-decay) as change of 4 in the nucleon number cannot be shown on the diagram'		[-]
		Do not give credit for a 'bald' $lpha$ (-decay)		

4 (a) (i) nucleus is small

		in comparison to size of atom	A1	[2]
	(ii)	nucleus is massive/heavy/dense	B1	
		and charged (allow to be scored in (i) or (ii))	B1	[2]
(b)	(i)	symmetrical path and deviation correct w.r.t. position of nucleus	B1	
		deviation less than in path AB	B1	
	(ii)	deviation > 90° and in correct direction	B1	[3]

М1

5	(a)	(i)	26 protonsB1	1
		(ii)	30 neutronsB1	1 [2]
	(b)	(i)	mass = 56 x 1.66 x 10^{-27}	1
		(ii)	density = mass/volume where volume = $4/3 \times \pi \times r^3$ C1 = $(9.3 \times 10^{-26})/(4/3 \times \pi \times \{5.7 \times 10^{-15}\}^3)$ = 1.2×10^{17} kg m ⁻³ A1	1 1 [4]
	(c)		nucleus occupies only very small fraction of <u>volume of atom</u> or 'lot of empty space inside atom'	1 1 [2]
			— TUITION —	

6	(a)	shows nucleon number as 220 B1 shows proton number as 87 B1	[2]
	(b)	shows products as He OR \a. B1 and ² !: At(allowe.c.f.from(a)) B1	[2]

7	(a	a re	egion/space/area where a (stationary) charge experiences an (electric) force	B1	1 [1]
	(b)	(i)	at least four parallel equally spaced straight lines perpendicular to plates	B	1
			consistent direction of an arrow on line(s) from left to right	Bŕ	1 [2]
		(ii)	electric field strength $E = V/d$	C	1
			$E = (450/16 \times 10^{-3})$ = 28 × 10 ³ (28 125) V m ⁻¹	A	1 [2]
		(iii)	W = Eqd or Vq	C	1
			$q = 3.2 \times 10^{-19}$ (C)		
			$W = 28125 \times 3.2 \times 10^{-19} \times 16 \times 10^{-3}$ or $450 \times 3.2 \times 10^{-19}$		
			$= 1.4(4) \times 10^{-16} \mathrm{J}$	A	1 [3]
		(iv)	ratio = $\frac{450 \times 3.2 \times 10^{-19}}{450 \times -1.6 \times 10^{-19}}$ (evidence of working required)		
			= (-) 2	A	1 [1]
	8	(a)	 (i) the direction of the fields is the same OR fields are uniform OR constant electric field strength OR E = V / d with symbols explained 	B1	[1]
			(ii) reduce p.d. across plates	B1	
			increase separation of plates	B1	[2]
			(iii) α opposite charge to β (as deflection in opposite direction) β has a range of velocities OR energies (as different deflections) and	B1	
			α all have same velocity OR energy (as constant deflection)	B1	
			α are more massive (as deflection is less for greater field strength)	B1	[3]
		(b) $W = 234$ and $X = 90$	B1	
			Y = 4 and $Z = 2$	B1	[2]
		(c)) $A = 32$ and $B = 16$ and $C = 0$ and $D = -1$	B1	[1]

9	(a	(i)	greater deflection	MO	
			greater electric field / force on α -particle	A1	[1]
		(ii)	greater deflection greater electric field / force on α -particle	M0 A1	[1]
			9		
	(b)	(<i>either</i> deflections in opposite directions because oppositely charged <i>or</i> β less deflection	M1 A1 (M1)	
			β has smaller charge	(A1)	[2]
		(ii)	α smaller deflection because larger mass	M1 A1	[2]
		(iii)	β less deflection because higher speed	B1	[1]
	(c)	<i>eith</i> rati	per $F = ma$ and $F = Eq$ or $a = Eq / m$ $a = either \frac{(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})}{(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})}$	C1	
			or [2e × 1 / 2000 u] / [e × 4u]	C1	
		rati	o = or 2.5 ⁻⁴ or 2.7 ⁻⁴	A1	[3]

CHEMISTRY ONLINE — TUITION —