Nuclear Physics Mark Scheme 2

Level	International	A Level
Subject	Physics	
Exam Board	CIE	
Торіс	Particle & Nu	clear Physics
Sub Topic	Nuclear Phys	ics
Paper Type	Theory	
Booklet	Mark Scheme	2

Time Allowed:	78 minutes
Score:	/65
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	 (a nucleus/nuclei emits spontaneously/randomly α-particles, β-particles, γ-ray photons 			
	(b)		$N - \Delta N$	A1	[1]
		(ii)	$\Delta N / \Delta t$	A1	
		(iii)	$\Delta N/N$	A1	
		(iv)	$\Delta N/N\Delta t$	A1	[1]
	(c)	gra <i>n</i> at	ph: smooth curve in correct direction starting at (0,0) t $2t_{\frac{1}{2}}$ is 1.5 times that at $t_{\frac{1}{2}}$ (± 2 mm)	M1	[2]
2	(a)	(i)	energy : $5.75 \times 1.6 \times 10^{-13}$: 9.2×10^{-13} J	A1	[1]
		(ii)	number = 1900/ (9.2 x 10 ⁻¹³ x 0.24) : 8.6×10^{15} S ⁻¹	C1 A1	[2]
	(b)) (i)	decay constant= 0.693/(2.8 × 365 × 24 × 3600) = 7.85 × 10- ⁹ s- ¹ <i>(allow 7.8 or 7.9 to 2 s.f.)</i>	C1 A1	[2]
		(ii)	A=?N 8.6 × 10 ¹⁵ = 7.85 × 10 ⁻⁹ × N N = 1.096 × 10 ²⁴	C1 C1	
			mass= $(1.096 \times 10^{24} \times 236)/(6.02 \times 10^{23})$ = 430g	M1 A1	[4]
	(c)	0.8	$4 = 1.9 \exp(-7.85 \times 10^{-9})$	C1	
		J. =	3.3 years	A1	[2]

	(b)	either energy = $c^2 \Delta m$	0.4	
		or energy = $(3.00 \times 10^{-10})^{-1} \times 1.66 \times 10^{-10}$ energy = 1.494×10^{-10} J	C1 C1	
		$= (1.494 \times 10^{-10})/(1.60 \times 10^{-10})$ = 934 MeV (3 s.f.)	A1	[3]
	(ii)	$\Delta m = (2.01356 + 3.01551) - (4.00151 + 1.00867)$ = 5.02907 - 5.01018		
		= 0.01889 u	C1	
		energy = 0.01889 × 934 = 17.6 MeV (<i>allow 2 s.f.</i>)	A1	[2]
	(iii)	high temperature means high speeds/ <u>kinetic</u> energy of nuclei D and T nuclei collide d <mark>e</mark> spite repelling one another	B1 B1	[2]
4	(a act	tivity = $(1.7 \times 10^{14})/(2.5 \times 10^{6})$ = $6.8 \times 10^{7} \text{ Bq kg}^{-1}$	A1	[1]
	(b) (energy released per second in 1.0 kg of steel = $6.8 \times 10^7 \times 0.067 \times 1.6 \times 10^{-13}$ = 7.3×10^{-7} J	В	[1]
	<i></i> ,			
	(ii)	this is a very small quantity of energy so steel will not be warm	B1	[1]
	(iii)	$A = A_0 e^{-\lambda t} and \lambda t_{\frac{1}{2}} = \ln 2$ 400 = (6.8 × 10 ⁷) exp(-[ln 2 × t]/92) t = 1600 years	С	
		or		
		$A = A_0 / 2^n$ $n = 17.4$	(C1) (C1)	

(a 'light' nuclei combine to form 'heavier' nuclei

3

$A = A_0 / 2^{\prime \prime}$	(C1)
<i>n</i> = 17.4	(C1)
$t = 17.4 \times 92 = 1600$ years	[3]

B1 [1]

5	(a) e	energy required to separate the nucleons (in a nucleus) to infinity (<i>allow reverse statement</i>)	M1 A1	[2]
	(b)	(i) $\Delta m = (2 \times 1.00867) + 1.00728 - 3.01551$ = 9.11 × 10 ⁻³ u binding energy = 9.11 × 10 ⁻³ × 930 = 8.47 MeV (allow 930 to 934 MeV so answer could be in range 8.47 to 8.51 MeV) (allow 2 s.f.)	C1 C1 A1	[3]
		 (ii) Δm = 211.70394 – 209.93722 = 1.76672 u binding energy per nucleon = (1.76672 × 930)/210 = 7.82 MeV (allow 930 to 934 MeV so answer could be in range 7.82 to 7.86 MeV) (allow 2 s.f.) 	C1 C1 A1	[3]
	(c)	total binding energy of barium and krypton is greater than binding energy of uranium	M1 A1	[2]
6	(a	time for number of atoms/nuclei/activity (of the isotope) to be reduced to one half (of its initial value)	M1 A1	[2]
	(b)	(i) $A = \lambda N$ $460 = N \times \ln 2/(8.1 \times 24 \times 60 \times 60)$ $N = 4.6 \times 10^8$	C1 C1 A1	[3]
		(ii) number of water molecules in 1.0 kg = $(6.02 \times 10^{23})/(18 \times 10^{-3})$ = 2.3×10^{25}	С	
		ratio = $(3.3 \times 10^{25})/(4.6 \times 10^{8})$ = 7.2 (7.3) × 10 ¹⁶	A1	[2]
	(c)	$A = A_0 e^{-\lambda t} \text{ and } \lambda t_{\frac{1}{2}} = \ln 2$	C1	
		t = 11.6 days (allow 2 s.f.)	А	[3]

7	(a	a energy to separate nucleons (in a nucleus) separate to infinity		M1 A1	[2]	
	(b)	(i)	(i) fission			[1]
		(ii)		U: near right-hand end of line	B1	[1]
			2.	Mo: to right of peak, less than 1/3 distance from peak to U	B1	[1]
			3.	La: 0.4 \rightarrow 0.6 of distance from peak to U	B1	[1]
		(iii)		right-hand side, mass = 235.922 u mass change = 0.210 u	C1 A1	[2]
			2.	energy = mc^2 = 0.210 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ²	C1	
				$= 3.1374 \times 10^{-11} \text{ J}$	C1	
				= 196 MeV (<u>need 3 s.f.</u>)	A1	[3]
				(use of 1 $u = 934$ MeV, allow 3/3; use of 1 $u = 930$ MeV or 932 MeV allow 2/3)		
				(use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3)		

