Nuclear Physics
 Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle \& Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a nucleus/nuclei emits
M1
spontaneously/randomly
α-particles, β-particles, γ-ray photons
A1 A1
[3]
(b) $\quad N-\Delta N$ A1
(ii) $\Delta N / \Delta t$ A1
(iii) $\Delta N / N$
(iv) $\Delta N / N \Delta t$
(c) graph: smooth curve in correct direction starting at $(0,0)$ n at $2 t_{1 / 2}$ is 1.5 times that at $t_{1 / 2}(\pm 2 \mathrm{~mm})$

2
(a) (i) energy : $5.75 \times 1.6 \times 10{ }^{-13}$
$: 9.2 \times 10{ }^{13} \mathrm{~J}$
(ii) number $=1900 /\left(9.2 \times 10-{ }^{13} \times 0.24\right)$

$$
: 8.6 \times 10^{15} \mathrm{~S}^{-1}
$$

(b) (i) decay constant $=0.693 /(2.8 \times 365 \times 24 \times 3600)$

$$
=7.85 \times 10-{ }^{-9} \mathrm{~s}-{ }^{-1} \text { (allow } 7.8 \text { or } 7.9 \text { to } 2 \text { s.f.) }
$$

(ii) $A=$?.. N
$8.6 \times 10^{15}=7.85 \times 10-{ }^{-9} \times N$ $N=1.096 \times 10^{24}$
mass $=\left(1.096 \times 10^{24} \times 236\right) /\left(6.02 \times 10^{23}\right)$ $=430 \mathrm{~g}$
(c) $0.84=1.9 \exp \left(-7.85 \times 10-{ }^{9}{ }^{1}\right)$ $f=1.04 \times 10^{8} \mathrm{~s}$ $=3.3$ years

C1
A1
A1

C1
A1

C1 C1

M1 A1

C1 A1
\qquad
[1]
[2]
[2]
(b) either energy $=c^{2} \Delta m$

$$
\begin{array}{rlrl}
\text { or energy } & =\left(3.00 \times 10^{8}\right)^{2} \times 1.66 \times 10^{-27} & & \mathrm{C} 1 \\
\text { energy } & =1.494 \times 10^{-10} \mathrm{~J} & & \mathrm{C} 1 \\
& =\left(1.494 \times 10^{-10}\right) /\left(1.60 \times 10^{-13}\right) & & \mathrm{A} 1 \\
& =934 \mathrm{MeV}(3 \mathrm{s.f.}) &
\end{array}
$$

(ii) $\quad \Delta m=(2.01356+3.01551)-(4.00151+1.00867)$

$$
\begin{aligned}
& =5.02907-5.01018 \\
& =0.01889 u
\end{aligned}
$$

$$
\begin{aligned}
\text { energy } & =0.01889 \times 934 \\
& =17.6 \mathrm{MeV} \text { (allow } 2 \text { s.f. })
\end{aligned}
$$

(iii) high temperature means high speeds/kinetic energy of nuclei B1
D and T nuclei collide despite repelling one another
$4 \quad$ (a activity $=\left(1.7 \times 10^{14}\right) /\left(2.5 \times 10^{6}\right)$

$$
=6.8 \times 10^{7} \mathrm{~Bq} \mathrm{~kg}^{-1}
$$

A1 [1]
(b) (energy released per second in 1.0 kg of steel

$$
\begin{aligned}
& =6.8 \times 10^{7} \times 0.067 \times 1.6 \times 10^{-13} \\
& =7.3 \times 10^{-7} \mathrm{~J}
\end{aligned}
$$

B
(ii) this is a very small quantity of energy so steel will not be warm
(iii) $A=A_{0} \mathrm{e}^{-\lambda t}$ and $\lambda t_{1 / 2}=\ln 2$
$400=\left(6.8 \times 10^{7}\right) \exp (-[\ln 2 \times t] / 92)$
$t=1600$ years
or
$A=A_{0} / 2^{n}$
(C1)
$n=17.4$
(C1)
$t=17.4 \times 92=1600$ years
5 (a) energy required to separate the nucleons (in a nucleus)
(b) (i) $\quad \Delta m=(2 \times 1.00867)+1.00728-3.01551$

$$
=9.11 \times 10^{-3} \mathrm{u} \quad \mathrm{C} 1
$$

binding energy $=9.11 \times 10^{-3} \times 930$

$$
=8.47 \mathrm{MeV}
$$

(allow 930 to 934 MeV so answer could be in range 8.47 to 8.51 MeV) (allow 2 s.f.)
(ii) $\quad \Delta m=211.70394-209.93722$

$$
=1.76672 u
$$

binding energy per nucleon $=(1.76672 \times 930) / 210$

$$
=7.82 \mathrm{MeV}
$$

(allow 930 to 934 MeV so answer could be in range 7.82 to 7.86 MeV) (allow 2 s.f.)
(c) total binding energy of barium and krypton
(a time for number of atoms/nuclei/activity (of the isotope)
(b) (i) $A=\lambda N$

$$
460=N \times \ln 2 /(8.1 \times 24 \times 60 \times 60)
$$

$$
N=4.6 \times 10^{8}
$$

(ii) number of water molecules in $1.0 \mathrm{~kg}=\left(6.02 \times 10^{23}\right) /\left(18 \times 10^{-3}\right)$

$$
=3.3 \times 10^{25}
$$

$$
\begin{aligned}
\text { ratio } & =\left(3.3 \times 10^{25}\right) /\left(4.6 \times 10^{8}\right) \\
& =7.2(7.3) \times 10^{16}
\end{aligned}
$$

(c) $A=A_{0} \mathrm{e}^{-\lambda t}$ and $\lambda t / 1 / 2=\ln 2$
$170=460 \exp (-\{\ln 2 t\} / 8.1)$
$t=11.6$ days (allow 2 s.f.)

C1

A1

> C1

A1

7 (a energy to separate nucleons (in a nucleus)
M1 separate to infinity
(b) (i) fission
(ii) U: near right-hand end of line
2. Mo: to right of peak, less than $1 / 3$ distance from peak to U
3. La: $0.4 \rightarrow 0.6$ of distance from peak to U
(iii) right-hand side, mass $=235.922 \mathrm{u}$ mass change $=0.210 u$
2. energy $=m c^{2}$

$$
\begin{aligned}
& =0.210 \times 1.66 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2} \\
& =3.1374 \times 10^{-11} \mathrm{~J} \\
& =196 \mathrm{MeV}(\text { need } 3 \text { s.f. })
\end{aligned}
$$

(use of $1 u=934 \mathrm{MeV}$, allow 3/3; use of $1 u=930 \mathrm{MeV}$ or 932 MeV , allow 2/3) (use of 1.67×10^{-27} not 1.66×10^{-27} scores max. $2 / 3$)

