Nuclear Physics
 Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle \& Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Mark Scheme 3

1 (a) probability of decay (of a nucleus)/fraction of number of nuclei in sample that decay M1 per unit time
(allow $\lambda=(d N / d t) / N$ with symbols explained $-(M 1),(A 1)$)
(b) (i) number $=\left(1.2 \times 6.02 \times 10^{23}\right) / 235$ C1

$$
=3.1 \times 10^{21}
$$

(ii) $N=N_{0} \mathrm{e}^{-\lambda t}$ negligible activity from the krypton B1 for barium, $N=\left(3.1 \times 10^{21}\right) \exp \left(-6.4 \times 10^{-4} \times 3600\right)$ $=3.1 \times 10^{20}$
activity $=\lambda N$
$=6.4 \times 10^{-4} \times 3.1 \times 10^{20}$
C1

$$
=2.0 \times 10^{17} \mathrm{~Bq}
$$

2 (a two (light) nuclei combine M1 to form a more massive nucleus A1
(b) $\mathbf{(} \Delta m=(2.01410 u+1.00728 u)-3.01605 u$

$$
=5.33 \times 10^{-3} u
$$

C1
energy $=c^{2} \times \Delta m$ C1
$=5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times\left(3.00 \times 10^{8}\right)^{2}$

$$
=8.0 \times 10^{-13} \mathrm{~J}
$$

$\begin{array}{ll}\text { (ii) speed/kinetic energy of proton and deuterium must be very large } & \text { B1 } \\ \text { so that the nuclei can overcome electrostatic repulsion } & \text { B1 }\end{array}$

3 (a energy is given out/released on formation of the α-particle (or reverse argument) either $E=m c^{2}$ so mass is less or reference to mass-energy equivalence
(b) mass change $=18.00567 \mathrm{u}-18.00641 \mathrm{u}$

$$
=7.4 \times 10^{-4} \mathrm{u} \text { (sign not required) } \quad \mathrm{A} 1
$$

(ii) energy $=c^{2} \Delta m$

$$
\begin{align*}
& =\left(3.0 \times 10^{8}\right)^{2} \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27} \tag{C1}\\
& =1.1 \times 10^{-13} \mathrm{~J}
\end{align*}
$$

(allow use of $\mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}$)
(allow method based on 1 u equivalent to 930 MeV to 933 MeV)
(iii) either mass of products greater than mass of reactants
or both nuclei positively charged
energy required to overcome electrostatic repulsion
(a (i) $x=2$
(ii) either beta particle or electron
(b) (mass of separate nucleons $=\{(92 \times 1.007)+(143 \times 1.009)\} u$

$$
=236.931 \mathrm{u}
$$

binding energy $=236.931 u-235.123 u$

$$
=1.808 u
$$

(ii) $E=m c^{2}$
energy $=1.808 \times 1.66 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2}$

$$
=2.7 \times 10^{-10} \mathrm{~J}
$$

binding energy per nucleon $=\left(2.7 \times 10^{-10}\right) /\left(235 \times 1.6 \times 10^{-13}\right)$
$=7.18 \mathrm{MeV}$
(c) energy released $=(95 \times 8.09)+(139 \times 7.92)-(235 \times 7.18)$

$$
\begin{aligned}
& =1869.43-1687.3 \\
& =182 \mathrm{MeV}
\end{aligned}
$$

(allow calculation using mass difference between products and reactants)
(a (i) either probability of decay (of a nucleus)
per unit time
or $\quad \lambda=(-)(\mathrm{d} N / \mathrm{d} t) / N$
$(-) \mathrm{d} N / \mathrm{d} t$ and N explained
(ii) in time $t_{1 / 2}$, number of nuclei changes from N_{0} to $1 / 2 N_{0}$
(b) $228=538 \exp (-8 \lambda)$

C
$\lambda=0.107$ (hours $^{-1}$) C1
$t_{1 / 2}=6.5$ hours (do not allow 3 or more SF)
A1
(c) e.g. random nature of decay background radiation daughter product is radioactive (any two sensible suggestions, 1 each) B2

6 (a nuclei having same number of protons/proton (atomic) number different numbers of neutrons/neutron number B1 (allow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number)
(b) probability of decay per unit time is the decay constant

C1

$\lambda=\ln 2 / t_{1 / 2}$
$=0.693 /(52 \times 24 \times 3600) \quad$ C1
$=1.54 \times 10^{-7} \mathrm{~s}^{-1} \quad \mathrm{~A} 1$
(c) $\quad A=A_{0} \exp (-\lambda t)$
$7.4 \times 10^{6}=A_{0} \exp \left(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600\right)$
C1
$7.4 \times 10^{6}=A_{0} \exp \left(-1.54 \times 10^{-7} \times\right.$
$A_{0}=9.8 \times 10^{6} \mathrm{~Bq}$
(alternative method uses 21 days
(ii)
$A=\lambda N$ and mass $=N \times 89 / N_{\mathrm{A}}$

mass $=\left(9.8 \times 10^{6} \times 89\right) /(1.54 \times$
$7.4 \times 10^{6}=A_{0} \exp \left(-1.54 \times 10^{-7} \times\right.$
$A_{0}=9.8 \times 10^{6} \mathrm{~Bq}$
(alternative method uses 21 days
(ii)
$A=\lambda N$ and mass $=N \times 89 / N_{\mathrm{A}}$

mass $=\left(9.8 \times 10^{6} \times 89\right) /(1.54 \times$
A1
(alternative method uses 21 days as 0.404 half-lives)

$$
\begin{array}{rlrl}
A=\lambda N & \text { and mass }=N \times 89 / N_{\mathrm{A}} & \mathrm{C} 1 \\
\text { mass } & =\left(9.8 \times 10^{6} \times 89\right) /\left(1.54 \times 10^{-7} \times 6.02 \times 10^{23}\right) & & \mathrm{A} 1
\end{array}
$$ \square

7 (a) (i) time for initial number of nuclei/activity to reduce to one half of its initial value
(ii) $\lambda=\ln 2 /(24.8 \times 24 \times 3600)$

$$
=3.23 \times 10^{-7} \mathrm{~s}^{-1}
$$

(b) (i) $A=\lambda N$

$$
3.76 \times 10^{6}=3.23 \times 10^{-7} \times N
$$

C1

$$
N=1.15 \times 10^{13}
$$

(ii) $N=N_{0} e^{-\lambda t}$

$$
\begin{align*}
& =1.15 \times 10^{13} \times \exp (-\{\ln 2 \times 30\} / 24.8) \tag{C1}\\
& =4.97 \times 10^{12}
\end{align*}
$$

A1
$\begin{aligned} \text { (c) ratio } & =\left(4.97 \times 10^{12}\right) /\left(1.15 \times 10^{13}-4.97 \times 10^{12}\right) & \text { C1 } \\ & =0.76 & \text { A1 }\end{aligned}$

$$
=0.76
$$

[2]
[2]

8 (a (i) probability of decay (of a nucleus) M1 per unit time A1
(ii) $\lambda t_{1 / 2}=\ln 2$
$\lambda=\ln 2 /(3.82 \times 24 \times 3600)$
M1
$=2.1 \times 10^{-6} \mathrm{~s}^{-1}$
A0

```
(b) \(A=\lambda N\)
C1
\(200=2.1 \times 10^{-6} \times N\)
C1
\(N=9.5 \times 10^{7}\)
ratio \(=\left(2.5 \times 10^{25}\right) /\left(9.5 \times 10^{7}\right)\)
\(=2.6 \times 10^{17}\)
(b) \(A=\lambda N\)
C1
    \(2.6 \times 10^{17}\)
```

