Nuclear Physics Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Particle & Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	81 minutes		
Score:	/67		
Percentage:	/100		

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	 (a) probability of decay (of a nucleus)/fraction of number of nuclei in sam that decay per unit time (allow λ =(dN / dt) / N with symbols explained – (M1), (A1)) 	ple M1 A1	[2]
	(b) (i) number = $(1.2 \times 6.02 \times 10^{23}) / 235$ = 3.1×10^{21}	C1 A1	[2]
	(ii) $N = N_0 e^{-\lambda t}$ negligible activity from the krypton for barium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ $= 3.1 \times 10^{20}$	B1 C1	

activity =
$$\lambda N$$

= $6.4 \times 10^{-4} \times 3.1 \times 10^{20}$
= 2.0×10^{17} Bq C1
A1 [4]

2	(a	two to fo	(light) nuclei combineIorm a more massive nucleusI	M1 A1	[2]
	(b)	($\Delta m = (2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = 5.33 × 10 ⁻³ u energy = $c^2 \times \Delta m$ = 5.33 × 10 ⁻³ × 1.66 × 10 ⁻²⁷ × (3.00 × 10 ⁸) ² = 8.0 × 10 ⁻¹³ J	C1 C1 A1	[3]
		(ii)	speed/kinetic energy of proton and deuterium must be very large so that the nuclei can overcome electrostatic repulsion	B1 B1	[2]
3	(a	ene eith or	ergy is given out / released on formation of the α -particle (or reverse argument) I er $E = mc^2$ so mass is less reference to mass-energy equivalence	M1 A1	[2]
	(b)		mass change = $18.00567 \text{ u} - 18.00641 \text{ u}$ = $7.4 \times 10^{-4} \text{ u}$ (sign not required)	C1 A1	[2]
		(ii)	energy = $c^2 \Delta m$ = $(3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$ = 1.1×10^{-13} J (allow use of u = 1.67×10^{-27} kg) (allow method based on 1u equivalent to 930 MeV to 933 MeV)	C1 A1	[2]
		(iii)	eithermass of products greater than mass of reactants this mass/energy provided as kinetic energy of the helium-4 nucleus both nuclei positively charged energy required to overcome electrostatic repulsion(Norboth nuclei positively charged energy required to overcome electrostatic repulsion(N	M1 A1 //1) A1)	[2]

4	(a	(i)	x = 2		A1	[
		(ii)	<i>either</i> beta particle <i>or</i> electron		B1	[1]
	(b)	(mass of separate nucleons = {(92 × 1.007) + (143 × 1.009)} u = 236.931 u binding energy = 236.931 u – 235.123 u		C1 C1	
			= 1.808 u		A1	[3]
		(ii)	$E = mc^2$ energy = 1.808 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ²		C1	
			$= 2.7 \times 10^{-10} \text{ J}$ binding energy per nucleon = $(2.7 \times 10^{-10}) / (235 \times 1.6 \times 10^{-13})$ = 7.18 MeV		C M	[3]
	(c)) en	ergy released = (95 × 8.09) + (139 × 7.92) – (235 × 7.18)		C1	
		(a	= 1869.43 – 1687.3 = 182 MeV low calculation using mass difference between products and reactants)		A1	[2]
5	(a	(i)	eitherprobability of decay (of a nucleus) per unit timeor $\lambda = (-)(dN/dt) / N$ (-)dN/dt and N explained	M1 A1 (M1) (A1)		[2]
		(ii)	in time $t_{\frac{1}{2}}$, number of nuclei changes from N_0 to $\frac{1}{2}N_0$ $\frac{1}{2} = \exp(-\lambda t_{\frac{1}{2}})$ or $2 = \exp(\lambda t_{\frac{1}{2}})$ ln $(\frac{1}{2}) = -\lambda t_{\frac{1}{2}}$ and ln $(\frac{1}{2}) = -0.693$ or ln $2 = \lambda t_{\frac{1}{2}}$ and ln $2 = 0.693$ $0.693 = \lambda t_{\frac{1}{2}}$	B1 B1 B1 A0		[3]
	(b)	228 λ = t _½ =	= 538 exp(-8λ) 0.107 (hours ⁻¹) 6.5 hours (do not allow 3 or more SF)	C C1 A1		[3]
	(c)	e.g. bac dau <i>(an</i>	random nature of decay kground radiation ghter product is radioactive y two sensible suggestions, 1 each)	B2		[2]

6	(a <u>r</u> ((nuclei having same number of protons/proton (atomic) number different numbers of neutrons/neutron number fallow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number)	B1 B1	[2]
	(b)	probability of decay per unit time is the decay constant	C1	
		$ \begin{array}{l} \chi = 112 / t_{2} \\ = 0.693 / (52 \times 24 \times 3600) \\ = 1.54 \times 10^{-7} \mathrm{s}^{-1} \end{array} $	C1 A1	[3]
	(c) (($A = A_0 \exp(-\lambda t)$ $7.4 \times 10^6 = A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$ $A_0 = 9.8 \times 10^6$ Bq (alternative method uses 21 days as 0.404 half-lives)	C1 A1	[2]
	(i	ii) $A = \lambda N$ and mass = $N \times 89 / N_A$	C1	
		mass = (9.8 × 10° × 89) / (1.54 × 10 ⁻⁷ × 6.02 × 10 ²³) = 9.4 × 10 ⁻⁹ g	A1	[2]
7	(a)	 (i) time for initial number of nuclei/activity to reduce to one half of its initial value 	M A	1 1 [2]
		(ii) $\lambda = \ln 2/(24.8 \times 24 \times 3600)$ = 3.23 × 10 ⁻⁷ s ⁻¹	M A	1 0 [1]
	(b)	(i) $A = \lambda N$	С	1
		$3.76 \times 10^6 = 3.23 \times 10^{-7} \times N$ N = 1.15 × 10 ¹³	А	1 [2]
		(ii) $N = N_0 e^{-\lambda t}$ = 1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8) = 4.97 × 10 ¹²	C A	1 1 [2]
	(c)	ratio = $(4.97 \times 10^{12})/(1.15 \times 10^{13} - 4.97 \times 10^{12})$ = 0.76	C A	1 1 [2]

