Equations of Motion
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Equations of Motion
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	84 minutes				
Score:	/70				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1
(a (i) acceleration $=(v-u) / t$ or $(12-0.5) / 4$
C1

$$
=(12-0.5) / 4=2.9(2.875)\left(=\text { approximately } 3 \mathrm{~m} \mathrm{~s}^{-2}\right) \quad \mathrm{M} 1
$$

(ii) $x=(u+v) t / 2$

$$
=[(12+0.5) \times 4] / 2
$$

(iii) line with increasing gradient non-zero gradient at origin
(b) (i) weight down slope $=2 \times 9.81 \times \sin 25^{\circ}=8.29 / 8.3$
(ii) $(F=m a) \quad 8.3-F_{R}=2 \times 2.9$
$F_{R}=2.5(2.3$ if 3 used for $a) \mathrm{N}$

2
(a $V_{\mathrm{v}}=-5.9$ at $t=1.2 \mathrm{~s}$ i.e. line is for negative values of V_{v}
(ii) $s=0+1 / 2 \times 9.81 \times(0.6)^{2} \quad$ or area of graph $=(5.9 \times 0.6) / 2$
[2]

$$
=25 \mathrm{~m}
$$

(i) straight line from $t=0.60 \mathrm{~s}$ to $t=1.2 \mathrm{~s}$ and $\left|V_{\mathrm{v}}\right|=5.9$ at $t=1.2 \mathrm{~s}$

$$
=1.8(1.77) \mathrm{m} \quad=1.8(1.77) \mathrm{m}
$$

(iii) $V_{\mathrm{h}}=V \cos 60^{\circ}$ and $V_{\mathrm{v}}=V \sin 60^{\circ}$ or $V_{\mathrm{h}}=5.9 / \tan 60^{\circ}$ or $V_{\mathrm{h}}=5.9 \tan 30^{\circ}$

$$
V_{\mathrm{h}}=3.4 \mathrm{~m} \mathrm{~s}^{-1}
$$

(iv) horizontal line at 3.4 from $t=0$ to $t=1.2 \mathrm{~s}$ [to half a small square]
(b) (i) $\mathrm{KE}=1 / 2 m v^{2}$

$$
\begin{aligned}
& \left.=1 / 2 \times 0.65 \times(6.81)^{2} \quad \text { [allow if valid method to find } v\right] \\
& =15(15.1) \mathrm{J}
\end{aligned}
$$

(ii) $\mathrm{PE}=0.65 \times 9.81 \times 1.77$

$$
=11(11.3) \mathrm{J}
$$

3 (a scalar has magnitude only B1
vector has magnitude and direction
(b) (i) $v^{2}=0+2 \times 9.81 \times 25$ (or using $\left.\frac{1}{2} m v^{2}=m g h\right)$ $v=22(.1) \mathrm{m} \mathrm{s}^{-1}$
(ii) $22.1=0+9.81 \times t\left(\right.$ or $\left.25=\frac{1}{2} \times 9.81 \times t^{2}\right)$ $t(=22.1 / 9.81)=2.26 \mathrm{~s}$ or $t\left[=(5.097)^{1 / 2}\right]=2.26 \mathrm{~s}$ C A1
(iii) horizontal distance $=15 \times t$

$$
=15 \times 2.257=33.86(\text { allow } 15 \times 2.3=34.5)
$$

C1
$(\text { displacement })^{2}=(\text { horizontal distance })^{2}+(\text { vertical distance })^{2}$ C1 C1

$$
1
$$

A1 [4]
(iv) distance is the actual (curved) path followed by ball B1 displacement is the straight line/minimum distance P to Q B1

$$
(0.091)]=2.20 \mathrm{~s}
$$

$$
\begin{aligned}
& =(25)^{2}+(33.86)^{2} \\
& \text { displacement }=42(42.08) \mathrm{m} \text { (allow } 43(42.6) \mathrm{m}, \text { allow } 2 \text { or more s.f. })
\end{aligned}
$$

-

[2]

4 (a units for D identified as $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
all other units shown: units for $A: \mathrm{m}^{2}$ units for $v^{2}: \mathrm{m}^{2} \mathrm{~s}^{-2}$ units for $\rho: \mathrm{kg} \mathrm{m}^{-3}$
$C=\frac{\mathrm{kgms}^{-2}}{\mathrm{~kg} \mathrm{~m}^{-3} \mathrm{~m}^{2} \mathrm{~m}^{2} \mathrm{~s}^{-2}}$ with cancelling/simplification to give C no units
(b) (i) straight line from $(0,0)$ to $(1,9.8) \pm$ half a square
(ii) $\begin{aligned} & 1 / 2 m v^{2}=m g h \\ & v=(2 \times 9.81 \times 1000)^{1 / 2}=140 \mathrm{~m} \mathrm{~s}^{-1}\end{aligned} \quad$ or using $v^{2}=2$ as A1
(c) (i) weight $=\operatorname{drag}(D)(+$ upthrust $)$ B1 Allow $m g$ or W for weight and D or expression for D for drag
(ii) 1. $m g=1.4 \times 10^{-5} \times 9.81$ C1
$1.4 \times 10^{-5} \times 9.81=0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^{2}$
$v=7.33 \mathrm{~ms}^{-1}$ A0
2. line from $(0,0)$ correct curvature to a horizontal line at velocity of $7 \mathrm{~ms}^{-1} \quad \mathrm{M} 1$ line reaches $7 \mathrm{~m} \mathrm{~s}^{-1}$ between 1.5 s and 3.5 s
(a (i) $v=u+a t$
(Use of $-g$ max 1/2. Use of $g=10$ max 1/2. Allow use of 9.8 . Allow $19 \mathrm{~ms}^{-1}$)
(ii) either $s=u t+1 / 2 a t^{2} \quad$ (or $v^{2}=u^{2}+2$ as etc.)

$$
=4.23 \times 1.51+0.5 \times 9.81 \times(1.51)^{2}
$$

$$
=17.6 \mathrm{~m}(\text { or } 17.5 \mathrm{~m})
$$

(Use of -g here wrong physics (0/2))
A1
(b) (i) $F=\Delta P / \Delta t$ need idea of change in momentum

C1

$$
=[0.0465 \times(18.6+19)] / 12.5 \times 10^{-3}
$$

$$
=140 \mathrm{~N}
$$

(Use of - sign max 2/4. Ignore -ve sign in answer)
Direction: upwards
B1
(ii) $h=1 / 2 \times(18.6)^{2} / 9.81$
(Use of $19 \mathrm{~m} \mathrm{~s}^{-1}, 0 / 2$ wrong physics)
(c) either kinetic energy of the ball is not conserved on impact
or speed before impact is not equal to speed after hence inelastic
6 (a (i) horizontal speed constant at $8.2 \mathrm{~m} \mathrm{~s}^{-1}$ C1
vertical component of speed $=8.2 \tan 60^{\circ}$ M1
$=14.2 \mathrm{~m} \mathrm{~s}^{-1}$ A0
(ii) $14.2^{2}=2 \times 9.8 \times h$ (using $g=10$ then -1) C1
vertical distance $=10.3 \mathrm{~m}$ A1
[2]
(iii) time of descent $=14.2 / 9.8=1.45 \mathrm{~s}$ C1

 \(x=1.45 \times 8.2\)
 $$
=11.9 \mathrm{~m}
$$

(b) (i) smooth path curved and above given path hits ground at more acute angleA1
(ii) smooth path curved and below given path M1hits ground at steeper angleA1A1

C

A1
(ii) $\quad V_{V}=12.4 \sin 36^{\circ}\left(=7.29 \mathrm{~m} \mathrm{~s}^{-1}\right)$
$h=7.29 \times 0.17-1 / 2 \times 9.81 \times 0.17^{2}$
C

$$
=1.1 \mathrm{~m}
$$

C1 A
distance $=10.0 \times 0.17$

$$
=1.7 \mathrm{~m}
$$

C
$\begin{array}{ll}\text { (b) smooth curve with ball hitting wall below original } & \text { B1 } \\ \text { smooth curve showing rebound to ground with correct reflection at wall } & \text { B1 }\end{array}$ smooth curve showing rebound to ground with correct reflection at wall B1

