Equations of Motion Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Kinematics
Sub Topic	Equations of Motion
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	84 minutes
Score:	/70
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a (i	acceleration = $(v - u) / t$ or $(12 - 0.5) / 4$	C1	
		= $(12 - 0.5) / 4 = 2.9 (2.875)$ (= approximately 3 m s^{-2})	M1	[2]
	(i) $x = (u + v)t/2$		
		$= [(12 + 0.5) \times 4] / 2$	C1	
		= 25 m	А	[2]
	(iii	line with increasing gradient non-zero gradient at origin	M1 A1	[2]
	(b) (i	weight down slope = $2 \times 9.81 \times \sin 25^\circ$ = 8.29 / 8.3	M1	[1]
	(ii	$(F = ma)$ 8.3 – $F_{\rm R} = 2 \times 2.9$	C1	
		$F_{\rm R} = 2.5 \ (2.3 \text{ if } 3 \text{ used for } a) \text{ N}$	A1	[2]
2	(a () straight line from $t = 0.60$ s to $t = 1.2$ s and $ V_v = 5.9$ at $t = 1.2$ s $V_v = -5.9$ at $t = 1.2$ s i.e. line is for negative values of V_v	M1 A1	[2]
	(i) $s = 0 + \frac{1}{2} \times 9.81 \times (0.6)^2$ or area of graph = $(5.9 \times 0.6) / 2$	C1	
		= 1.8 (1.77) m = 1.8 (1.77) m	A1	[2]
	(ii) $V_{\rm h} = V \cos 60^{\circ} \text{ and } V_{\rm v} = V \sin 60^{\circ} \text{ or } V_{\rm h} = 5.9 / \tan 60^{\circ} \text{ or } V_{\rm h} = 5.9 \tan 30^{\circ}$	C1	
		$V_{\rm h} = 3.4{\rm ms^{-1}}$	A1	[2]
	(ir) horizontal line at 3.4 from $t = 0$ to $t = 1.2$ [to half a small square]	B1	[1]
	(b) () KE = $\frac{1}{2}mv^2$	C1	
		= $\frac{1}{2} \times 0.65 \times (6.81)^2$ [allow if valid method to find v]	C1	
		= 15 (15.1)J	A1	[3]
	(i) PE = $0.65 \times 9.81 \times 1.77$	C1	
		= 11(11.3) J	A1	[2]

B1 (a scalar has magnitude only vector has magnitude and direction B1 [2] **(b)** (i) $v^2 = 0 + 2 \times 9.81 \times 25$ (or using $\frac{1}{2}mv^2 = mgh$) С $v = 22(.1) \text{ m s}^{-1}$ A1 [2] (ii) 22.1 = 0 + 9.81 × t (or 25 = $\frac{1}{2}$ × 9.81 × t²) Μ $t (=22.1/9.81) = 2.26 \text{ s or } t [=(5.097)^{1/2}] = 2.26 \text{ s}$ A0 [1] (iii) horizontal distance = $15 \times t$ = 15 × 2.257 = 33.86 (allow 15 × 2.3 = 34.5) C1 $(displacement)^2 = (horizontal distance)^2 + (vertical distance)^2$ = $(25)^2 + (33.86)^2$ C1 C1 displacement = 42 (42.08) m (allow 43 (42.6) m, allow 2 or more s.f.) A1 [4] (iv) distance is the actual (curved) path followed by ball B1 displacement is the straight line/minimum distance P to Q B1 [2]

3

4	(a	units for <i>D</i> identified as kg m s ⁻² all other units shown: units for <i>A</i> : m ² units for v^2 : m ² s ⁻² units for ρ : kg m ⁻³			
		C =	$\frac{\text{kgms}^{-2}}{\text{kgm}^{-3}\text{ m}^{2}\text{ m}^{2}\text{ s}^{-2}}$ with cancelling/simplification to give C no units	A1	[2]
	(b)	(i)	straight line from $(0,0)$ to $(1,9.8) \pm$ half a square	B1	[1]
		(ii)	$\frac{1}{2} mv^2 = mgh$ or using $v^2 = 2as$ $v = (2 \times 9.81 \times 1000)^{1/2} = 140 \mathrm{m s^{-1}}$	C1 A1	[2]
	(c)	(i)	weight = drag (<i>D</i>) (+ upthrust) Allow <i>mg</i> or <i>W</i> for weight and <i>D</i> or expression for <i>D</i> for drag	B1	[1]
		(ii)	1. $mg = 1.4 \times 10^{-5} \times 9.81$	C1	
			$1.4 \times 10^{-5} \times 9.81 = 0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^2$	M1	
			$v = 7.33 \mathrm{ms^{-1}}$	A0	[2]
			2. line from (0,0) correct curvature to a horizontal line at velocity of 7 m s^{-1} line reaches 7 m s^{-1} between 1.5 s and 3.5 s	M1 A	[2]
5	(a	(i)	v = u + at = 4.23 + 9.81 × 1.51 = 19.0(4) m s ⁻¹ (Allow 2 s.f.) (Use of -g max 1/2. Use of g = 10 max 1/2. Allow use of 9.8. Allow 19 m	C1 M1 A0 os ⁻¹)	[2]
		(ii)	either $s = ut + \frac{1}{2} at^2$ (or $v^2 = u^2 + 2as$ etc.) = 4.23 × 1.51 + 0.5 × 9.81 × (1.51) ² = 17.6 m (or 17.5 m) (Use of -g here wrong physics (0/2))	C1 A1	[2]
	(b)) (i)	$F = \Delta P / \Delta t \text{ need idea of change in momentum}$ = [0.0465 × (18.6 + 19)] / 12.5 × 10 ⁻³ = 140 N	C1 C1 A1	
			(<i>Use of – sign max 2/4. Ignore –ve sign in answer</i>) Direction: upwards	B1	[4]
		(ii)	$h = \frac{1}{2} \times (18.6)^2 / 9.81$ = 17.6 m (2 s.f1) (Use of 19 ms ⁻¹ , 0/2 wrong physics)	C1 A1	[2]
	(c)	eit	her kinetic energy of the ball is not conserved on impact	-	

speed before impact is not equal to speed after hence inelastic Β1 [1] or

6	(a	(i)	horizontal speed constant at 8.2 m s ⁻¹ vertical component of speed = 8.2 tan 60° = 14.2 m s^{-1}	C1 M1 A0	[2]
		(ii)	$14.2^2 = 2 \times 9.8 \times h$ (using $g = 10$ then -1) vertical distance = 10.3 m	C1 A1	[2]
		(iii)	time of descent = 14.2 / 9.8 = 1.45 s	C1	
			$x = 1.45 \times 8.2$ = 11.9 m	A1	[2]
	(b)	(i)	smooth path curved and above given path hits ground at more acute angle	M1 A1	[2]
		(ii)	smooth path curved and below given path hits ground at steeper angle	M1 A1	[2]
7	(a	(i)	$V_{\rm H} = 12.4 \cos 36^{\circ} (= 10.0 {\rm m s^{-1}})$	С	
			$= 1.7 \mathrm{m}$	A1	[2]
		(ii)	$V_V = 12.4 \sin 36^\circ (= 7.29 \mathrm{m s^{-1}})$ $h = 7.29 \times 0.17 - \frac{1}{2} \times 9.81 \times 0.17^2$ $= 1.1 \mathrm{m}$	C C1 A	[3]
	(b)	smo smo	both curve with ball hitting wall below original both curve showing rebound to ground with correct reflection at wall	B1 B1	[2]

