Equations of Motion Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Equations of Motion
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	78 minutes						
Score:	/65						
Percentage:		100					
A	A	B	C	D	E	U	
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$	

(a (i) 1. distance of path / along line $A B$
B1 [1]
2. shortest distance between $A B$ / distance in straight line between $A B$ or displacement from A to B

B1 [1]
(ii) acceleration = rate of change of velocity

A1 [1]
(b) (i) distance $=$ area under line or $(v / 2) t$ or $s=(8.8)^{2} /(2 \times 9.81)$

$$
=8.8 / 2 \times 0.90=3.96 \mathrm{~m} \text { or } \mathrm{s}=3.95 \mathrm{~m}=4(.0) \mathrm{m}
$$

(ii) acceleration $=(-4.4-8.8) / 0.50$ C1

$$
=(-) 26(.4) \mathrm{m} \mathrm{~s}^{-2}
$$

(c) (i) the accelerations are constant as straight lines the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down) B1
(ii) area under the lines represents height or KE at trampoline equals PE at maximum heightB1
second area is smaller / velocity after rebound smaller hence KE less B1
hence less height means loss in potential energy A0

2 (a work done is the force \times the distance moved / displacement in the direction of the force
or
work is done when a force moves in the direction of the force B1
(b) component of weight $=850 \times 9.81 \times \sin 7.5^{\circ}$

$$
=1090 \mathrm{~N}
$$

A1
(use of incorrect trigonometric function, $0 / 2$)
(c) $\quad \Sigma F=4600-1090=(3510)$
deceleration $=3510 / 850$
A1

$$
=4.1 \mathrm{~m} \mathrm{~s}^{-2}
$$

A0
(ii) $v^{2}=u^{2}+2 a s$
$0=25^{2}+2 \times-4.1 \times s$
$s=625 / 8.2$

$$
=76 \mathrm{~m}
$$

C1
(allow full credit for calculation of time (6.05 s) \& then s)
(iii) 1. kinetic energy $=1 / 2 m v^{2}$

$$
\begin{aligned}
& =0.5 \times 850 \times 25^{2} \\
& =2.7 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

2. work done $=4600 \times 75.7$

$$
=3.5 \times 10^{5} \mathrm{~J}
$$

A1
(iv) difference is the loss in potential energy (owtte)

B

3 (a scalar has only magnitude vector has magnitude and direction
(b) kinetic energy, mass, power all three underlined
(c) (i) $s=u t+1 / 2 a t^{2}$
$15=0.5 \times 9.81 \times t^{2}$
$T=1.7 \mathrm{~s}$
if $g=10$ is used then -1 but only once on paper
(ii) vertical component v_{v} :
$v_{v}{ }^{2}=u^{2}+2 a s=0+2 \times 9.81 \times 15$ or $v_{v}=u+a t=9.81 \times 1.7(5)$
$v_{v}=17.16$
resultant velocity: $v^{2}=(17.16)^{2}+(20)^{2}$
$v=26 \mathrm{~m} \mathrm{~s}^{-1}$
If $u=20$ is used instead of $u=0$ then $0 / 3$
Allow the solution using:
initial (potential energy + kinetic energy) $=$ final kinetic energy
(iii) distance is the actual path travelled
displacement is the straight line distance between start and finish points (in that direction) / minimum distance

B1
C1
C1
A1
C1
A1
[2]
[3]
[2]

4 (a acceptable straight line drawn (touching every point)
B1
(b) the distance fallen is not d C1 d is the distance fallen plus the diameter of the ball
(' d is not measured to the bottom of the ball' scores $2 / 2$)
(c) (i) diameter: allow $1.5 \pm 0.5 \mathrm{~cm}$ (accept one SF)
no ecf from (a)
(ii) gradient $=4.76, \pm 0.1$ with evidence that origin has not been used C
gradient $=g_{-2} / 2$ C1
$g=9.5 \mathrm{~m} \mathrm{~s}^{-2}$
(a) (i) $E=V / d$

$$
=350 /\left(2.5 \times 10^{-2}\right)
$$

$$
=1.4 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}
$$

A1

$=2.24 \times 10^{-15}$ A0

$a=\left(2.24 \times 10^{-15}\right) /\left(9.1 \times 10^{-31}\right)$

(ii) $s=1 / 2 a t^{2}$ C1
$2.5 \times 10^{-2}=1 / 2 \times 2.46 \times 10^{15} \times t^{2}$ $t=4.5 \times 10^{-9} \mathrm{~s}$ A1
(c) either gravitational force is normal to electric force or electric force horizontal, gravitational force vertical B2
special case: force/acceleration due to electric field >> force/acceleration due to gravitational field, allow 1 mark

6 (a $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
(b) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(c) (i) $v^{2}=2 g s$
$=2 \times 9.8 \times 4.5$
C1
$v=9.4 \mathrm{~m} \mathrm{~s}^{-1}$
A1
[2]
(ii) either
$F\left(=3.2 \times 10^{-4} \times 1.2 \times 10^{-2} \times 9.4\right)=3.6 \times 10^{-5} \mathrm{~N} \quad \mathrm{M} 1$
weight of sphere $\left(=m g=15 \times 10^{-3} \times 9.8\right)=0.15 \mathrm{~N}$
(b) $\begin{aligned} F & =(\mathrm{ma} \\ a & =(2.24\end{aligned}$
7 (a) (i) acceleration (allow a definition of acceleration) B1
(ii) the velocity is decreasing or force/acceleration is in negative direction - accept 'body is decelerating'/‘slowing down'
(b) (i) e.g. separation of dots becomes constant/does not continue to increase (must make a reference to the diagram)B1

(ii) at constant speed, distance travelled in $0.1 \mathrm{~s}=25 \mathrm{~cm}$
\qquad distance $=132+(4 \times 25)$ $=232 \mathrm{~cm}$ A1
(c) $\quad s=u t+1 / 2 a t^{2}$

 hence 6 photographs ('bald' answer scores 2 marks only)........... A1

