Equations of Motion Mark Scheme 3

Level	International A Level	
Subject	Physics	
Exam Board	CIE	
Торіс	Kinematics	
Sub Topic	Equations of Motion	
Paper Type	Theory	
Booklet	Mark Scheme 3	

Time Allowed:	78 minutes
Score:	/65
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(i)	1. distance of path / along line AB	B1	[1]
	 shortest distance between AB / distance in straight line between AB or displacement from A to B 	B1	[1]
(ii)	acceleration = rate of change of velocity	A1	[1]
(i)	distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ = 8.8 / 2 × 0.90 = 3.96 m or $s = 3.95$ m = 4(.0) m	C1 A	[2]
(ii)	acceleration = $(-4.4 - 8.8) / 0.50$ = $(-) 26(.4) \text{ m s}^{-2}$	C1 A1	[2]
(i)	the accelerations are constant as straight lines	B1	
	the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)	B1	[2]
(ii)	area under the lines represents height or KE at trampoline equals PE at maximum height	B1	
	second area is smaller / velocity after rebound smaller hence KE less	B1	
	hence less height means loss in potential energy	A0	[2]
	(i) (ii) (ii) (i) (ii)	 (i) 1. distance of path / along line AB 2. shortest distance between AB / distance in straight line between AB or displacement from A to B (ii) acceleration = rate of change of velocity (i) distance = area under line or (v/2)t or s = (8.8)² / (2 × 9.81) = 8.8 / 2 × 0.90 = 3.96 m or s = 3.95 m = 4(.0) m (ii) acceleration = (-4.4 - 8.8) / 0.50 = (-) 26(.4) m s⁻² (i) the accelerations are constant as straight lines the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down) (ii) area under the lines represents height or KE at trampoline equals PE at maximum height second area is smaller / velocity after rebound smaller hence KE less hence less height means loss in potential energy 	(i)1. distance of path / along line ABB12. shortest distance between AB / distance in straight line between AB or displacement from A to BB1(ii)acceleration = rate of change of velocityA1(ii)distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ $= 8.8 / 2 \times 0.90 = 3.96$ m or $s = 3.95$ m = 4(.0) mC1 A(ii)acceleration = $(-4.4 - 8.8) / 0.50$ $= (-) 26(.4)$ m s ⁻² C1 A1(i)the accelerations are constant as straight linesB1the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)B1(ii)area under the lines represents height or KE at trampoline equals PE at maximum heightB1second area is smaller / velocity after rebound smaller hence KE lessB1hence less height means loss in potential energyA0

<u>CHEMISTRY ONLINE</u> — TUITION —

1

2	(a work done is the force × the distance moved / displacement in the direction of the force							
		wor	k is done when a fo	prce moves in the di	rection of the force		B1	[1]
	(b)	con (<i>use</i>	nponent of weight = = e of incorrect trigon	= 850 × 9.81 × sin 7 = 1090 N ometric function, 0/2	.5° 2)		C1 A1	[2]
	(c)		$\Sigma F = 4600 - 1090$ deceleration = 357 = 4.1	= (3510) 10 / 850 m s ⁻²			M1 A1 A0	[2]
		(ii)	$v^2 = u^2 + 2as$ $0 = 25^2 + 2 \times - 4.$ s = 625 / 8.2	1 × s			C1	
			= 76 m (allow full credit fo	r calculation of time	(6.05 s) & then s)		A1	[2]
		(iii)	1. kinetic energy	$= \frac{1}{2} mv^{2}$ = 0.5 × 850 × 25 ²			C1	101
			2 work dono	$= 2.7 \times 10^{\circ} \text{ J}$			A1	[2]
			 work done 	$= 4600 \times 75.7$ = 3.5 × 10 ⁵ J			A1	[1]
		(iv)	difference is the lo	ss in potential energ	gy (owtte)		В	[1]

<u>CHEMISTRYONLINE</u> — TUITION —

3	(a	sca vec	lar has only magnitude tor has magnitude and direction	B1 B1	[2]
	(b)	kine	etic energy, mass, power all three underlined	B1	[1]
	(c)	(i)	$s = ut + \frac{1}{2} at^{2}$ $15 = 0.5 \times 9.81 \times t^{2}$ T = 1.7 s if $q = 10$ is used then -1 but only once on paper	C1 A1	[2]
		(ii)	vertical component v_v : $v_v^2 = u^2 + 2as = 0 + 2 \times 9.81 \times 15$ or $v_v = u + at = 9.81 \times 1.7(5)$ $v_v = 17.16$ resultant velocity: $v^2 = (17.16)^2 + (20)^2$ $v = 26 \text{ ms}^{-1}$	C1 C1 A1	[3]
			If $u = 20$ is used instead of $u = 0$ then 0/3 Allow the solution using: initial (potential energy + kinetic energy) = final kinetic energy		
		(iii)	distance is the actual path travelled displacement is the straight line distance between start and finish points (in that direction) / minimum distance	B1 B1	[2]
4	(a	ac	ceptable straight line drawn (touching every point)	B1	[1]
	(b)) the di	e distance fallen is not <i>d</i> s the distance fallen plus the diameter of the ball	C1 A1	[2]
		('d	is not measured to the bottom of the ball' scores 2/2)		
	(c)) (i)	diameter: allow 1.5 ± 0.5 cm (accept one SF) no ecf from (a)	A1	[1]
		(ii)	gradient = 4.76, ± 0.1 with evidence that origin has not been used gradient = $g / 2$ $g = 9.5 \text{ m s}^{-2}$	C1 C1 A1	[3]

5	(a)	(i)	E = V / d = 350 / (2.5 × 10 ⁻²) = 1.4 × 10 ⁴ N C ⁻¹	C1		[0]
		(ii)	force = Eq = 1. ${}^{4} \times 1$ ${}^{-19}$ = 2.24 × 10 ⁻¹⁵	C1 M1 A0		[2]
	(b)	(i)	F = ma	C1		
			$a = (2.24 \times 10^{-15}) / (9.1 \times 10^{-31})$ = 2.4 ¹⁵ m ⁻² (allow × 10 ⁵)	A1		[2]
		(ii)	$s = \frac{1}{2}at^2$	C1		
			$2.5 \times 10^{-9} \text{ s}$	A1		[2]
	(c)	eith or spe due	 er gravitational force is normal to electric force electric force horizontal, gravitational force vertical cial case: force/acceleration due to electric field >> force/acceleration to gravitational field, allow 1 mark 	B2 ration		[2]
6	(a	kg i	m s ⁻²		B1	[1]
	(b)	kg i	m ⁻¹ s ⁻¹		B1	[1]
	(c)	(i)	$v^2 = 2gs$ = 2 × 9.8 × 4.5 $v = 9.4 \text{ m s}^{-1}$		C1 A1	[2]
		(ii)	either $F (= 3.2 \times 10^{-4} \times 1.2 \times 10^{-2} \times 9.4) = 3.6 \times 10^{-5} \text{ N}$ weight of sphere $(= mg = 15 \times 10^{-3} \times 9.8) = 0.15 \text{ N}$ $3.6 \times 10^{-5} << 0.15$, so justified or $mg = crv_T$ (M1) terminal speed = $3.8 \times 10^4 \text{ m s}^{-1}$ (M1)		M1 M1 A1	[3]

7 (a)	(i)	acceleration (allow a definition of acceleration)B1	
	(ii)	the velocity is decreasing or force/acceleration is in negative direction – accept 'body is decelerating'/'slowing down'	[2]
(b)	(i)	e.g. separation of dots becomes constant/does not continue to increase (must make a reference to the diagram)B1	
	(ii)	distance = 132 cmB1	
	(ii)	at constant speed, distance travelled in 0.1 s = 25 cm (allow \pm 1 cm)C1 distance = 132 + (4 x 25) = 232 cmA1	[4]
(c)		$s = ut + \frac{1}{2}at^{2}$ $1.6 = \frac{1}{2} \times 9.8 \times t^{2}$ (allow $g = 10 \text{ m s}^{-2}$ C1 t = 0.57 sC1 hence 6 photographs ('bald' answer scores 2 marks only)A1	[3]

