Motion Graphs Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	70 minutes
Score:	/58
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	spe	eed = distance/time and velocity = displacement/time							
	spe vel	eed is a scalar as distance has no direction and ocity is a vector as displacement has direction	B1	[2]					
(b)	(i)	constant acceleration or linear/uniform increase in velocity until 1.1s	B1						
		rebounds or bounces or changes direction	B1						
		decelerates to zero velocity at the same acceleration as initial value							
	(ii)	a = (v - u)/t or use of gradient implied	C1						
		= $(8.8 + 8.8)/1.8$ or appropriate values from line or = $(8.6 + 8.6)/1.8$							
		= 9.8 (9.78) m s ⁻² or = 9.6 m s ⁻²	A1	[3]					
	(iii) 1. distance = first area above graph + second area below graph								
	$= (1.1 \times 10.8)/2 + (0.9 \times 8.8)/2 (= 5.94 + 3.96)$								
		= 9.9 m	A1	[3]					
		2. displacement = first area above graph – second area below graph	C1						
		$= (1.1 \times 10.8)/2 - (0.9 \times 8.8)/2$							
		= 2.0 (1.98)m	А	[2]					
	(iv)	correct shape with straight lines and all lines above the time axis or all below	M1						
		correct times for zero speeds (0.0, 1.15 s, 2.1 s) and peak speeds (10.8 m s ⁻¹ at 1.1 s and 8.8 m s ⁻¹ at 1.2 s and 3.0 s)		[2]					

1

2	(a	spe	ec	decreases/stone decelerates <u>to rest/zero</u> at 1.25 s	B1	
		spe	ec	then increases/stone accelerates (in opposite direction)	B1	[2]
	(b)	(i)	v	= $u + at$ (or $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$)	С	
				= 0 + (3.00 – 1.25) × 9.81	C1	
				$= 17.2 (17.17) \mathrm{m s^{-1}}$	A1	[3]
		(ii)	s	$= ut + \frac{1}{2}at^2$		
			s s	$= \frac{1}{2} \times 9.81 \times (1.25)^{2} [= 7.66]$ = $\frac{1}{2} \times 9.81 \times (1.75)^{2} [= 15.02]$	C1 C1	
			(0	distance = 7.66 + 15.02)		
			[v	$v = u + at = 0 + 9.81 \times (2.50 - 1.25) = 12.26 \mathrm{ms^{-1}}$		
			0 S S	r = $\frac{1}{2} \times 9.81 \times (1.25)^2$ [= 7.66] = 12.26 × 0.50 + $\frac{1}{2} \times 9.81 \times (3.00 - 2.50)^2$ [= 7.36]	(C1) (C1)	
			(0	distance = 2 × 7.66 + 7.36)		
			E s s	Example alternative method: = $(v^2 - u^2)/2a = (12.26^2 - 0)/2 \times 9.81$ [= 7.66] = $(v^2 - u^2)/2a = (17.17^2 - 12.26^2)/2 \times 9.81$ [= 7.36]	(C1) (C1)	
			(0	distance = 2 × 7.66 + 7.36)		
			:	22.7 (22.69 or 23)m	A	[3]
		(iii)	((s = 15.02 – 7.66 =) 7.4 (7.36) m <i>(ignore sign in answer)</i>	A1	
			(down	A1	[2]
	(c)	str	ai	ght line from positive value of <i>v</i> to <i>t</i> axis	M1	
		sa	me	e straight line <u>crosses</u> <i>t</i> axis at <i>t</i> = 1.25 s	A1	
		sa	me	e straight line continues with same gradient to $t = 3.0 s$	A1	[3]

3	(a	<u>cor</u>	<u>istant</u> rate of increase in velocity/acceleration from $t = 0$ to $t = 8$ s	B1	
		<u>cor</u> velo	<u>instant</u> deceleration from $t = 8$ s to $t = 16$ s or constant rate of increase in ocity in the opposite direction from $t = 10$ s to $t = 16$ s	B1	[
	(b)	(i)	area under lines to 10 s	C1	
			(displacement =) $(5.0 \times 8.0) / 2 + (5.0 \times 2.0) / 2 = 25 \text{ m}$ or $\frac{1}{2} (10.0 \times 5.0) = 25 \text{ m}$	A1	[2]
		(ii)	a = (v - u)/t or gradient of line	C1	
			= (-15.0 -5.0) / 8.0		
			$= (-) 2.5 \mathrm{ms^{-2}}$	A1	[2]
		(iii)	$KE = \frac{1}{2}mv^2$	C1	
			$= 0.5 \times 0.4 \times (15.0)^2 = 45 \mathrm{J}$	А	[2]
	(c)	(dis	stance =) 25 (m) (= $ut + \frac{1}{2}at^2$) = 0 + $\frac{1}{2} \times 2.5 \times t^2$	C1	
		(<i>t</i> =	= 4.5 (4.47) s therefore) time to return = $14.5 s$	A1	[2]

<u>CHEMISTRYONLINE</u> — TUITION —

4	(a	(i)	<i>either</i> rate of change of displacement or (change in) displacement/time (taken)	B1	[1]
		(ii)	speed has magnitude only velocity has magnitude and direction	B1 B1	[2]
	(b)	(i)	idea of area under graph/use of $s = \frac{(u+v)}{2} \times t$	C1	
			$s = \frac{(18+32)}{2} \times 2.5$	C1	
			= 62.5 m	A1	[3]
		(ii)	a = (18 - 32)/2.5 (= -5.6) F = ma $F = 1500 \times (-) 5.6 = (-) 8400 \text{ N}$	C1 C1 A1	[3]
	(c)	arro	ow labelled A and arrow labelled F both to the left	B1	[1]
5	(a	(i)	velocity = rate of <u>change</u> of displacement OR displacement <u>change</u> / time (taken)	A1	[1]
		(ii)	acceleration = rate of <u>change</u> of velocity OR <u>change</u> in velocity / time (taken)	A1	[1]
	(b)	(i)	initial constant velocity as straight line / gradient constant	B1	
			middle section deceleration/ speed / velocity decreases / slowing down as gradient decreases last section lower velocity (than at start) as gradient (constant and) smaller [special case: all three stages correct descriptions but no reasons 1/3]	B1 B1	[3]
		(ii)	velocity = $45 / 1.5 = 30 \text{ m s}^{-1}$	A1	[1]
		(iii)	velocity at 4.0 s is (122 – 98) / 2.0 = 12 (m s ⁻¹) (allow 12 to 13)	B1	
			acceleration = $(12 - 30) / 2.5 = -7.2 \text{ m s}^{-2}$ (if answer not this value then comment needed to explain why, e.g. difficulty in drawing tangent)	A1	[2]
		(iv)	F = ma = (-)1500 × 7.2 = (-)11000 (10800) N	C1 A1	[2]

•