Motion Graphs Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Mark Scheme 2

$$
1 \text { (a force }=\text { rate of change of momentum }
$$

(b) (horizontal line on graph from $t=0$ to t about $2.0 \mathrm{~s} \pm 1 / 2$ square, $a>0$
horizontal line at 3.5 on graph from 0 to 2 s
vertical line at $t=2.0 \mathrm{~s}$ to $a=0$ or sharp step without a line B1
horizontal line from $t=2 \mathrm{~s}$ to $t=4 \mathrm{~s}$ with $a=0$
(ii) straight line and positive gradient
starting at $(0,0)$ A1
finishing at $(2,16.8)$ A1
horizontal line from 16.8
from 2.0 to 4.0

2 (a (i) 1. distance of path / along line $A B$
2. shortest distance between $A B$ / distance in straight line between $A B$ or displacement from A to B
(ii) acceleration = rate of change of velocity
(b) (i) distance $=$ area under line or $(v / 2) t$ or $s=(8.8)^{2} /(2 \times 9.81)$

$$
=8.8 / 2 \times 0.90=3.96 \mathrm{~m} \text { or } s=3.95 \mathrm{~m}=4(.0) \mathrm{m}
$$

(ii) acceleration $=(-4.4-8.8) / 0.50$

$$
=(-) 26(.4) \mathrm{m} \mathrm{~s}^{-2}
$$

(c) (i) the accelerations are constant as straight lines
the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)
(ii) area under the lines represents height or KE at trampoline equals PE at maximum height
second area is smaller / velocity after rebound smaller hence KE less
hence less height means loss in potential energy A

B1 M1

B1 [1]

B1 [1]

C1
A

A1

B1 B1 B1 A0
(a (i) $v^{2}=u^{2}+2 a s$

$$
\begin{array}{ll}
=(8.4)^{2}+2 \times 9.81 \times 5 & \text { C1 } \\
=12.99 \mathrm{~m} \mathrm{~s}^{-1} \text { (allow } 13 \text { to } 2 \text { s.f. but not } 12.9 \text {) }
\end{array}
$$

(ii) $t=(v-u) / a$ or $s=u t+1 / 2 a t^{2}$

$$
=(12.99-8.4) / 9.81 \text { or } 5=8.4 t+1 / 2 \times 9.81 t^{2} \quad \text { M1 }
$$

$$
t=0.468 \mathrm{~s} \quad \mathrm{~A} 0
$$

(b) reasonable shape
suitable scale A1
correctly plotted $1^{\text {st }}$ and last points at $(0,8.4)$ and $(0.88-0.96,0)$ with non-vertical line at 0.47 s
(c) (i) 1. kinetic energy at end is zero so $\Delta \mathrm{KE}=1 / 2 m v^{2}$ or $\Delta \mathrm{KE}=1 / 2 m u^{2}-1 / 2 m v^{2} \quad \mathrm{C} 1$

$$
\begin{aligned}
& =1 / 2 \times 0.05 \times(8.4)^{2} \\
& =(-) 1.8 \mathrm{~J}
\end{aligned}
$$

A1
2. final maximum height $=(4.2)^{2} /(2 \times 9.8)=(0.9(\mathrm{~m}))$
change in $\mathrm{PE}=m g h_{2}-m g h_{1}$
C1 $\begin{array}{ll}=0.05 \times 9.8 \times(0.9-5) & \mathrm{C} 1 \\ =(-) 2.0 \mathrm{~J} & \text { A1 }\end{array}$
(ii) change is - $3.8(\mathrm{~J})$ B1
energy lost to ground (on impact) / energy of deformation of the ball / thermal energy in ball

B1

$$
\begin{aligned}
4 \text { (a average velocity } & =540 / 30 & \text { C1 } \\
& =18 \mathrm{~m} \mathrm{~s}^{-1} & \text { A1 }
\end{aligned}
$$

(b) velocity zero at time $t=0$horizontal line to time $=100 \mathrm{~s}$

B
(a) constant velocity / speed

B1 [1]
2. either constant / uniform decrease (in velocity/speed)
or constant rate of decrease (in velocity/speed)

> B1 [1]
(b) (i) distance is area under graph for both stages

C1
stage 1: distance $(18 \times 0.65)=11.7(\mathrm{~m})$
stage 2: distance $=(9 \times[3.5-0.65])=25.7(\mathrm{~m})$
total distance $=37 .(4) \mathrm{m}$
(-1 for misreading graph)
\{for stage 2, allow calculation of acceleration $\left(6.32 \mathrm{~m} \mathrm{~s}^{-2}\right)$
and then $\left.s=(18 \times 2.85)+1 / 2 \times 6.32(2.85)^{2}=25.7 \mathrm{~m}\right\}$
(ii) either $F=m a$ $a=(18-0) /(3.5-0.65)$
or $\quad E_{K}=1 / 2 m v^{2}$
C1
$F=1250 \times 6.3=7900 \mathrm{~N}$
or initial momentum $=1250 \times 18$ or $F=1 / 2 \times 1250 \times(18)^{2} / 25.7=7900 \mathrm{~N} \quad$ A1 \quad (C1)
$F=$ change in momentum / time taken
$F=(1250 \times 18) / 2.85=7900$
(c) (i) stage 1: either half / less distance as speed is half / less
or half distance as the time is the same or sensible discussion of reaction time
(ii) stage 2: either same acceleration and $s=v^{2} / 2 a$ or v^{2} is $1 / 4$ $1 / 4$ of the distance B1

6 (a force $=$ rate of change of momentum (allow symbols if defined)
(b) (i) $\Delta \rho=140 \times 10^{-3} \times(5.5+4.0)$

$$
=1.33 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
$$

C1
A1
(ii) force $=1.33 / 0.04 \quad \mathrm{M} 1$
$=33.3 \mathrm{~N}$
A0
(c) (i) taking moments about B
$(33 \times 75)+(0.45 \times g \times 25)=F_{\mathrm{A}} \times 20 \quad$ C1

$$
F_{A}=129 \mathrm{~N}
$$

(ii) $F_{B}=33+129+0.45 g$

$$
=166 \mathrm{~N}
$$

(a) scalar B1scalarB1
vector B1
(b) (i) 1 gradient (of graph) is the speed/velocity (can be scored here or in 2) initial gradient is zero B1 [2]
2 gradient (of line/graph) becomes constant B1[1]
(ii) speed $=(2.8 \pm 0.1) \mathrm{m} \mathrm{s}^{-1}$ A2
(iii) curved line never below given line and starts from zero B1
continuous curve with increasing gradient B1
line never vertical or straight B1[3]
(if answer $> \pm 0.1$ but $\leq \pm 0.2$, then award 1 mark)[3]

