Motion Graphs Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	84 minutes
Score:	/70
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	forc	ce = rate of change of momentum								
	(b)	((horizontal line on graph from $t = 0$ to t about 2.0 s ± ½ square, $a > 0$ horizontal line at 3.5 on graph from 0 to 2 s vertical line at $t = 2.0$ s to $a = 0$ or sharp step without a line horizontal line from $t = 2$ s to $t = 4$ s with $a = 0$								
		(ii)	M1 A1 A1 M1 A1	[5]							
2	(a	(i)	1. distance of path / along line AB	B1	[1]						
			 shortest distance between AB / distance in straight line between AB or displacement from A to B 	B1	[1]						
		(ii)	acceleration = rate of change of velocity	A1	[1]						
	(b)) (i)	i) distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ = 8.8 / 2 × 0.90 = 3.96 m or $s = 3.95$ m = 4(.0) m								
		(ii)	acceleration = $(-4.4 - 8.8) / 0.50$ = $(-) 26(.4) \text{ m s}^{-2}$	C1 A1	[2]						
	(c)	(i)	the accelerations are constant as straight lines	B1							
			B1	[2]							
		(ii)	area under the lines represents height or KE at trampoline equals PE at maximum height	B1							
			second area is smaller / velocity after rebound smaller hence KE less	B1							
			hence less height means loss in potential energy	A0	[2]						

3	(a	(i)	$v^2 = u^2 + 2as$ = (8.4) ² + 2 × = 12.99 m s ⁻¹	9.81 × 5 (allow 13 to 2 s.f. but not 12.9)	C1 A1	[2]
		(ii)	t = (v - u) / a or = (12.99 - 8.4) t = 0.468 s	$s = ut + \frac{1}{2}at^2$ / 9.81 or 5 = 8.4t + $\frac{1}{2} \times 9.81t^2$	M1 A0	[1]
	(b)	rea sui cor wit	sonable shape table scale rectly plotted 1 st a n non-vertical line	nd last points at (0,8.4) and (0.88 – 0.96,0) at 0.47 s	M1 A1 A1	[3]
	(c)	(i)	1. kinetic energy = ½ × 0.05 = (−) 1.8 J	at end is zero so $\Delta KE = \frac{1}{2} mv^2$ or $\Delta KE = \frac{1}{2} mu^2 - \frac{1}{2} mv^2 \times (8.4)^2$	C1 A1	[2]
			2. final maximun change in PE	h height = $(4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})$ = $mgh_2 - mgh_1$ = $0.05 \times 9.8 \times (0.9 - 5)$ = $(-) 2.0 \text{ J}$	C1 C1 A1	[3]
		(ii)	change is – 3.8 (energy lost to gro thermal energy in	J) ound (on impact) / energy of deformation of the ball / n ball	B1 B1	[2]
4	- (ja a	average velocity = =	= 540 / 30 = 18 m s ⁻¹		C1 A1	[2]
	((b)	velocity zero at tim positive value and ine / curve through negative horizonta norizontal line to ti	the $t = 0$ horizontal line for time $t = 5$ s to 35 s in $v = 0$ at $t = 45$ s to negative velocity il line from 53 s with magnitude less than positive value me = 100 s	and	B1 B B1 B	[4]

5	(a)		COI	nstant	velo	ocity / s	peed								B1	[1]
	2	2.	eiti or	her c c	onst onst	ant / ur ant rate	iform d e of dec	ecrea: rease	se (in (in ve	veloc locity	ity/spee /speed)	ed))			B1	[1]
	(b) (i) d s	istanc tage 1	e is a : dista	rea (ance	under g (18 × (raph foi).65) =	r both 11.7 (i	stage n)	S					C1	
		s to (- {1 a	stage 2: distance = $(9 \times [3.5 - 0.65]) = 25.7$ (m) total distance = $37.(4)$ m (-1 for misreading graph) {for stage 2, allow calculation of acceleration (6.32 m s^{-2}) and then $s = (18 \times 2.85) + \frac{1}{2} \times 6.32 (2.85)^2 = 25.7 \text{ m}$ }									A1	[2]			
	(i	i) e	ither	F = m a = (1	na 8 —	0)/(3.5	- 0.65)	or	Ε _κ = Ε _κ =	= ½m = ½ ×	v ² 1250 ×	(18) ²			C1 C1	
		F o	F = 125 r init F = F =	50 × 6 tial mo = char = (125	.3 = omer nge i 0 ×	7900 N ntum = n mome 18) / 2.8	1250 × entum / 35 = 79	<i>or F</i> 18 time t 00	[:] = ½ : aken	× 125	0 × (18)² / 25.7	7 = 7900)N	A1 (C1) (C1) (A1)	[3]
	(c) (i) s	tage 1	: eit or or	her	half / le half dis sensib	ess dista stance a le discu	ance a as the ission	as spe time i of rea	ed is s the iction	half / le same time	ess			B1	[1]
	(i	i) s	tage 2	2: eit. 1⁄4	<i>her</i> of th	same a e distar	accelera nce	ation a	ind s :	= v ² /	2a or	<i>v</i> ² is ⅓	4		B1 B1	[2]
6	(a f	orce	= rate	e of ch	ang	e of mo	mentur	n	(all	ow sy	mbols i	f define	ed)		B1	[1]
	(b) ((i) ∠	$\Delta \rho = -$	140 × 1.33 k	10 ⁻³ g m	× (5.5 s ^{−1}	+ 4.0)								C1 A1	[2]
	(i	ii) f	orce = =	= 1.33 = 33.3	/ 0.0 N)4									M1 A0	[1]
	(c) ((i) ta (<i>F</i>	aking 33 × 7 - _A = 12	mome '5) + (29 N	ents 0.45	about E × g × 2	3 25) = F _A	× 20							C1 C1 A1	[3]
	(i	ii) F	F _B = 33 = 16	3 + 12 56 N	9+(0.45 <i>g</i>									C1 A1	[2]

7	(a)	sca sca vec	lar lar tor		B1 B1 B1	[3]
	(b)	(i)	1	gradient (of graph) is the speed/velocity (<i>can be scored here or in 2</i>)		
				initial gradient is zero	B1	[2]
			2	gradient (of line/graph) becomes constant	B1	[1]
		(ii)	sŗ	beed = $(2.8 \pm 0.1) \text{ m s}^{-1}$	A2	[2]
			(i1	answer > ± 0.1 but $\leq \pm 0.2$, then award 1 mark)		
		(iii)	Cl	urved line never below given line and starts from zero	B1	
			CC	ontinuous curve with increasing gradient	B1	[2]
			111		DI	ျပ

