Motion Graphs

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Mark Scheme 3
bookiet	Ividik Scheme 5

Time Allowed: 78 minutes

Score: /65

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

distance = $39 \text{ m} (allow \pm 0.5 m)$ Α [3] $(if > \pm 0.5 m \text{ but} \le 1.0 m, \text{ then allow 1 mark})$ (b) (i) 1 $E_K = \frac{1}{2}mv^2$ $\Delta E_K = \frac{1}{2} \times 92 \times (6^2 - 3^2)$ = 1240 J C1 [2] Α1 **2** $E_{P} = mgh$ C1 $\Delta E_{P} = 92 \times 9.8 \times 1.3$ = 1170J Α1 [2] (ii) E = PtC1

(a evidence of use of area below the line

 $E = 75 \times 8$ = 600 J

- (c) (i) energy = (1240 + 600) 1170 = 670 J M1 A [1] (ii) force = 670/39 = 17 N A [1]
- (d) frictional forces include air resistance
 air resistance decreases with decrease of speed

 B1
 [2]

B1

Α

[2]

(answer 15.6 scores 2 marks answer 10.8 or 4.8 scores 1 mark)

alternative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^2$ = 6.0 m

(answer 66 scores 2 marks answer 36 or 30 scores 1 mark)

- - (ii) g = weight / mass C1 = 2.9 / 0.78 = 3.7 m s⁻² A1 [2]
- uses a tangent (anywhere), not a single point C1 draws tangent at correct position B1 acceleration = 1.7 ± 0.1 (outside $1.6 \rightarrow 1.8$ but within $1.5 \rightarrow 1.9$, allow 1 mark)
 - (b) (i) because slope (of tangent of graph) is decreasing M1 acceleration is decreasing A1 [2]
 - (ii) e.g. air resistance increases (with speed)
 (angle of) slope of ramp decreases

 B1 [1]
 - (c) (i) scatter of points about line
 (ii) intercept / line does not go through origin

 B1 [1]
 B1 [1]

4	(a)	(i)	use of tangent at time $t = 0$ acceleration= 42 \pm 4 cm s2	B1 A1	[2]
		(ii)	use of area of loop distance = 0.031 ± 0.001 m allow 1 mark if 0.031 ± 0.002 m)	B1 B2	[3]
	(b)	(i)	F=ma = 0.93 x 0.42 {allow e.c.f. from (a)(i)}	C1	
			= 0.39 N	A1	[2]
		(ii)	force reduces to zero in first 0.3 s then increases again in next 0.3 s in the opposite direction	B1 M1 A1	[3]

5 (a) constant gradient/straight line

B1 [1]

(b) (1.2 s

Α1

(ii) 4.4 s

A1 [2]

(c) either use of area under line or h = average speed x time

C1

h = $\frac{1}{2}$ x (4.4 – 1.2) x 32

C1

= 51.2 m

A1 [3]

(allow 2/3 marks for determination of h = 44 m or h = 58.4 m allow 1/3 marks for answer 7.2 m)

(d) $\Delta p = m\Delta v OR p = mv$

 $= 0.25 \times (28 + 12)$

= 10 N s

A1 [3]

(answer 4 N s scores 2/3 marks)

(e) (i) total/sum momentum before = total/sum momentum after

B1

in any closed system

B1 [2]

(ii) either the system is the ball and Earth

B1

momentum of Earth changes by same amount

B1

but in the opposite direction

- **B**1
- or Ball is not an isolated system/there is a force on the ball (B1)
 - Gravitational force acts on the ball

- (B1)
- causes change in momentum/law does not apply here (B1)
- [3]
- (if explains in terms of air resistance, allow first mark only)

6	(a)	$v^2 = u^2 + 2as$ OR use of triangle etc	C1	
		s = 0.82 m OR 0.80 m	A1	[2]
	(b)	$\Psi = m(v - u)$ OR $p = mv$ speeds are 4.2 m s ^{.1} and 3.6 m s ^{.1}	C1 C1	[4]
	(c)	any time between 0.14 sand 0.17 s force = !).p/ Af = 0.35 / 0.14 (allow e.c.f.) = 2.5 N :-	Cl Al	[2]