Motion Graphs Mark Scheme 4

Level		International A Level	
Subject		Physics	
Exam Bo	bard	CIE	
Торіс		Kinematics	
Sub Top	ic	Motion Graphs	
Paper Type		Theory	
Booklet		Mark Scheme 4	
Time Allo	owed:	48 minutes	
Time Allo Score:	owed:	48 minutes /40	
Score:		/40	
Score:		/40	

1	(a	(work =) force \times distance <u>moved</u> / displacement in the direction of the force OR when a force moves in the direction of the force work is done			[1]
	(b)	kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.4 (2.5)^2 = 1.25 / 1.3 J$			[2]
	(c)	(i) area under graph is work done / work done = $\frac{1}{2}Fx$ 1.25 = (14 x) / 2 x = 0.18 (0.179) m [allow x = 0.19 m using kinetic energy = 1.3 J]		C1 C1 A1	[3]
		(ii)	smooth curve from $v = 2.5$ at $x = 0$ to $v = 0$ at Q curve with increasing gradient	M1 A1	[2]
2	(a	(i)	acceleration = change in velocity / time (taken) or acceleration = rate of change of velocity	B1	[1]
		(ii)	a body continues at constant velocity unless acted on by a resultant force	B1	[1]
	(b)	(b) (i) distance is represented by the area under graph distance = $\frac{1}{2} \times 29.5 \times 3 = 44.3 \text{ m}$ (accept 43.5 m for 29 to 45 m for 30)		C1 A1	[2]
	 (ii) resultant force = weight – frictional force frictional force increases with speed at start frictional force = 0 / at end weight = frictional force 		B1 B1 B1	[3]	
		(iii)	1. frictional force increases	B1	[
			2. frictional force (constant) and then decreases	B1	[1]
		(iv)	1. acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = (-) 15 m s ⁻²	C1 A1	[2]
			2. $W - F = ma$ $W = 95 \times 9.81 (= 932)$ $F = (95 \times 15) + 932 = 2400 (2360) (2357) N$	C1 C1 A	[3]

asherrana@chemistryonlinetuition.com

3	(a)	weight = 452 × 9.81 component down the slope = 452 × 9.81 × sin 14° = 1072.7 = 1070 N			M1 A0	[1]
	(b)		F = ma T – (1070 + 525) = 452 × 0.13 T = 1650 (1653.76)N any forces missing 1/3		C1 C1 A1	[3]
		(ii)	1. $s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$ $t = [(2 \times 10) / 0.13]^{1/2} = 12.4$ or $12s$		C1 A1	[2]
			2. $v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$		A1	[1]
	(c)	line (line	ght line from the origin down to zero velocity in short time compared to stage 1 less steep negative gradient velocity larger than final velocity in the first part – at least 2×		B1 B1 B1 B1	[4]
4	(a)	(i) (ii)	scatter of points (about the line) intercept (on <i>t</i> ² axis) (note that answers must relate to the graph)	B1 B1	[2]	
	(b)	(i)	gradient = $\Delta y / \Delta x = (100 - 0) / (10.0 - 0.6)$ gradient = 10.6 (cm s ⁻²) (allow ±0.2)	C1 A1	[2]	
		(ii)	(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for 11 cm s ⁻² i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks) $s = ut + \frac{1}{2}at^2$ so acceleration = 2 x gradient acceleration = 0.212 m s ⁻²	B1 B1 Fotal	[3] [7]	