Motion Graphs
 Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Mark Scheme 4

1 (a (work =) force \times distance moved / displacement in the direction of the force OR when a force moves in the direction of the force work is done

B1 [1]
(b) kinetic energy $=1 / 2 m v^{2}$

$$
=\underline{1 / 20.4(2.5)^{2}=1.25 / 1.3 \mathrm{~J}}
$$

(c) (i) area under graph is work done / work done $=1 / 2 F x$
$1.25=(14 x) / 2$
C1
$x=0.18(0.179) \mathrm{m} \quad[$ allow $x=0.19 \mathrm{~m}$ using kinetic energy $=1.3 \mathrm{~J}] \quad$ A1
(ii) smooth curve from $v=2.5$ at $x=0$ to $v=0$ at Q

M1
curve with increasing gradient

2 (a (i) acceleration = change in velocity / time (taken) or acceleration = rate of change of velocity
(ii) a body continues at constant velocity unless acted on by a resultant force

B1
(b) (i) distance is represented by the area under graph C1
distance $=1 / 2 \times 29.5 \times 3=44.3 \mathrm{~m}$ (accept 43.5 m for 29 to 45 m for 30)
A1
(ii) resultant force $=$ weight - frictional force B1 frictional force increases with speed B1
at start frictional force $=0 /$ at end weight $=$ frictional force B1
(iii) 1. frictional force increases
2. frictional force (constant) and then decreases
(iv) 1. acceleration $=\left(v_{2}-v_{1}\right) / t=(20-50) /(17-15)$

$$
=(-) 15 \mathrm{~ms}^{-2}
$$

$$
\text { 2. } \begin{array}{ll}
W-F=m a \\
W=95 \times 9.81(=932) \\
F=(95 \times 15)+932=2400(2360)(2357) \mathrm{N}
\end{array}
$$

(b) (i) $F=m a$
$T-(1070+525)=452 \times 0.13$
$T=1650(1653.76) \mathrm{N}$ any forces missing $1 / 3$
(ii) 1. $s=u t+1 / 2 a t^{2}$ hence $10=0+1 / 2 \times 0.13 t^{2}$ $t=[(2 \times 10) / 0.13]^{1 / 2}=12.4$ or 12 s
2. $v=(0+2 \times 0.13 \times 10)^{1 / 2}=1.61$ or $1.6 \mathrm{~m} \mathrm{~s}^{-1}$
(c) straight line from the origin
line down to zero velocity in short time compared to stage $1 \quad$ B1
line less steep negative gradient
final velocity larger than final velocity in the first part - at least $2 \times$

B1

B1
B1
(a) (i) scatter of points (about the line)
(ii) intercept (on t^{2} axis)
(note that answers must relate to the graph)
(b) \quad (i) \quad gradient $=\Delta y / \Delta x=(100-0) /(10.0-0.6)$ C1
gradient $=10.6\left(\mathrm{~cm} \mathrm{~s}^{-2}\right) \quad$ (allow $\left.\pm 0.2\right)$
A1
[2]
(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for $11 \mathrm{~cm} \mathrm{~s}^{-2}$
i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks)
(ii)
$s=u t+\frac{1}{2} a t^{2}$
so acceleration $=2 \times$ gradient B1 acceleration $=0.212 \mathrm{~m} \mathrm{~s}^{-2}$

