Newton's Laws of Motion Mark Scheme 1

Level		International	A Level		
Subject		Physics			
Exam Board		CIE			
Торіс		Dynamics			
Sub Topic		Newton's Lav	ws of Motio	n	
Paper Type		Theory			
Booklet		Mark Scheme	e 1		
Time Allowed:	72 minutes	5			
Score:	/60				
Percentage:	/100				
Α* Α	В	C	D	F	U
			VIN		-
>85% '77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	a ac	bod ted	y/mass/object continues (at rest or) at constant/uniform velocity unless on by a <u>resultant</u> force	B1	[1]
	(b)) (i)) w no	eight <u>vertically</u> down ormal/reaction/contact (force) perpendicular/normal <u>to the slope</u>	B1 B1	[2]
		(ii) 1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$	C1 M1	[2]
			2.	F = ma		
				= 169 N (allow to 2 or 3 s.f.)	A1	[1]
			3.	weight component seen: $mg \sin \theta$ (218 N) 218 - R = 169 R = 49 N (require 2 s.f.)	C1 C1 A1	[3]
	2	(a	(i)	acceleration = change in velocity / time (taken) or acceleration = rate of change of velocity	B1	[1]
			(ii)	a body continues at constant velocity unless acted on by a resultant force	B1	[1]
		(b)	(i)	distance is represented by the area under graph distance = $\frac{1}{2} \times 29.5 \times 3 = 44.3 \text{ m}$ (accept 43.5 m for 29 to 45 m for 30)	C1 A1	[2]
			(ii)	resultant force = weight – frictional force frictional force increases with speed at start frictional force = 0 / at end weight = frictional force	B1 B1 B1	[3]
		((iii)	1. frictional force increases	B1	[
				2. frictional force (constant) and then decreases	B1	[1]
		((iv)	1. acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = (-) 15 m s ⁻²	C1 A1	[2]
				2. $W - F = ma$ $W = 95 \times 9.81 (= 932)$ $F = (95 \times 15) + 932 = 2400 (2360) (2357) N$	C1 C1 A	[3]

3 (a		(resultant) force = rate of change of momentum / allow proportional to or change in momentum / time (taken)				
	(b)	(i)	Δp	$p = (-) 65 \times 10^{-3} (5.2 + 3.7)$	C1	
				= (–) 0.58 N s	A1	[2]
		(ii)	I	$F = 0.58/7.5 \times 10^{-3}$		
				= 77(.3)N	A	[1]
	(c)	(i)	1.	force on the wall from the ball is equal to the force on ball from the wall but in the opposite direction (statement of Newton's third law can score one mark)	M1 A1	[2]
			2.	momentum change of ball is equal and opposite to momentum change of the wall / change of momentum of ball and wall is zero	B1	[1]
		(ii)	<u>kir</u> (A	netic energy (of ball and wall) is reduced / not conserved so inelastic llow relative speed of approach does not equal relative speed of separation.)	B1	[1]
	⁴ (a)	A bo (ext	ody continues at rest or constant velocity unless acted on by a resultant ernal) force	B1	[1]
	(b)	(i)	constant velocity/zero acceleration and therefore no resultant force no resultant force (and no resultant torque) hence in equilibrium	M1 A1	[2]
			(ii)	$\frac{\text{component of weight}}{\text{tension}} = 450 \times 9.81 \times \sin 12^{\circ} (= 917.8)$ $= 650 + 450 g \sin 12^{\circ} = (650 + 917.8)$ $= 1600 (1570) \text{N}$	C1 C1 A1	[3]
			(iii)	work done against frictional force or friction between log and slope output power greater than the gain in PE / s	M1 A1	[2]

5	(a)	displacement is a vector, distance is a scalar displacement is straight line between two points / distance is sum of lengths moved / example showing difference				
	(b)	a t	body continues at rest or at constant velocity unless acted on by a <u>resultant</u>	B1	[1]	
		(67		ы	נין	
	(c)	(i)	sum of T_1 and T_2 equals frictional force these two forces are in opposite directions (allow for 1/2 for travelling in straight line hence no rotation / no resultant torque)	B1 B1	[2]	
		(ii)	 scale vector triangle with correct orientation / vector triangle with correct orientation both with arrows scale given or mathematical analysis for tensions 	B1 B1	[2]	
			2. $T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$ $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$	A1 A1	[2]	
6	(a	(i)	base units of <i>D</i> : force: kg m s ⁻² radius: m velocity: m s ⁻¹	B1 B1		
			base units of D: $[F / (R \times v)] \text{ kg m s}^{-2} / (m \times m \text{ s}^{-1})$ = kg m ⁻¹ s ⁻¹	M A0	[3]	
		(ii)	1. $F = 6\pi \times D \times R \times v = [6\pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7]$ = 6.9 × 10 ⁻⁵ N	A1	[1]	
			2. $mg - F = ma$ hence $a = g - [F / m]$ $m = \rho \times V = \rho \times 4/3 \pi R^3 = (1.4 \times 10^{-5})$ $a = 9.81 - [6.9 \times 10^{-5}] / \rho \times 4/3 \pi \times (1.5 \times 10^{-3})^3$ (9.81 - 4.88) $a = 4.9(3) \text{ m s}^{-2}$	C1 M1 A1	[3]	
	(b)	(i)	a = g at time t = 0 a decreases (as time increases) a goes to zero	B1 B1 B1	[3]	
		(ii)	Correct shape below original line I sketch goes to terminal velocity earlier	M1 A1	[2]	

asherrana@chemistryonlinetuition.com