Newton's Laws of Motion Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Newton's Laws of Motion
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	72 minutes					
Score:	/60					
Percentage:	/100					
A	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

1 (a a body/mass/object continues (at rest or) at constant/uniform velocity unless acted on by a resultant force

B1 [1]
(b) (i) weight vertically down

B1
normal/reaction/contact (force) perpendicular/normal to the slope
B1
(ii) 1. acceleration $=$ gradient or $(v-u) / t$ or $\Delta v / t$

C1

$$
=(6.0-0.8) /(2.0-0.0)=2.6 \mathrm{~m} \mathrm{~s}^{-2}
$$

M1
[2]
2. $F=m a$

$$
\begin{aligned}
& =65 \times 2.6 \\
& =169 \mathrm{~N} \text { (allow to } 2 \text { or } 3 \text { s.f.) }
\end{aligned}
$$

3. weight component seen: $\mathrm{mg} \sin \theta(218 \mathrm{~N})$

$$
218-R=169
$$

$$
R=49 \mathrm{~N} \quad \text { (require } 2 \text { s.f.) }
$$

2 (a (i) acceleration = change in velocity / time (taken)
2 (a (i) acceleration = change in velocity / time (taken
(ii) a body continues at constant velocity unless acted on by a resultant force

B1
(b) (i) distance is represented by the area under graph A1
(ii) resultant force $=$ weight - frictional force
frictional force increases with speed
B1
at start frictional force $=0 /$ at end weight $=$ frictional force
B1
(iii) 1. frictional force increases
2. frictional force (constant) and then decreases
(iv) 1. acceleration $=\left(v_{2}-v_{1}\right) / t=(20-50) /(17-15)$
$=(-) 15 \mathrm{~m} \mathrm{~s}^{-2}$
2. $W-F=m a$
$W=95 \times 9.81(=932)$

$$
F=(95 \times 15)+932=2400(2360)(2357) \mathrm{N}
$$

3 (a (resultant) force = rate of change of momentum / allow proportional to or change in momentum / time (taken)

B1
(b) (i) $\Delta p=(-) 65 \times 10^{-3}(5.2+3.7)$ C1

$$
=(-) 0.58 \mathrm{~N} \mathrm{~s}
$$

(ii) $\quad F=0.58 / 7.5 \times 10^{-3}$
$=77(.3) \mathrm{N}$
(c) (i) 1. force on the wall from the ball is equal to the force on ball from the wall but in the opposite direction (statement of Newton's third law can score one mark)
2. momentum change of ball is equal and opposite to momentum change of the wall / change of momentum of ball and wall is zero
(ii) kinetic energy (of ball and wall) is reduced / not conserved so inelastic

B1 (Allow relative speed of approach does not equal relative speed of separation.)

4 (a) A body continues at rest or constant velocity unless acted on by a resultant (external) force
(b) (i) constant velocity/zero acceleration and therefore no resultant force no resultant force (and no resultant torque) hence in equilibrium
(ii) component of weight $=450 \times 9.81 \times \sin 12^{\circ}(=917.8)$

C1
tension $=650+450 g \sin 12^{\circ}=(650+917.8) \quad$ C1

$$
=1600(1570) \mathrm{N}
$$

A1
(iii) work done against frictional force or friction between log and slope M1 output power greater than the gain in PE / s

A1
(c) (i) sum of T_{1} and T_{2} equals frictional force these two forces are in opposite directions (allow for $1 / 2$ for travelling in straight line hence no rotation / no resultant torque)
(ii) 1. scale vector triangle with correct orientation / vector triangle with correct orientation both with arrows scale given or mathematical analysis for tensions
2. $T_{1}=10.1 \times 10^{3}\left(\pm 0.5 \times 10^{3}\right) \mathrm{N}$ $T_{2}=16.4 \times 10^{3}\left(\pm 0.5 \times 10^{3}\right) \mathrm{N}$

A1 A1

6 (a (i) base units of D :
force: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
radius: $\mathrm{m} \quad$ velocity: ms^{-1}
base units of $D:[F /(R \times v)] \mathrm{kg} \mathrm{ms}^{-2} /\left(\mathrm{m}^{2} \mathrm{~m} \mathrm{~s}^{-1}\right) \quad \mathrm{M}$
$=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(ii) 1. $F=6 \pi \times D \times R \times v=\left[6 \pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7\right]$

$$
=6.9 \times 10^{-5} \mathrm{~N}
$$

2. $m g-F=m a \quad$ hence $a=g-[F / m]$
$m=\rho \times V=\rho \times 4 / 3 \pi R^{3}=\left(1.4 \times 10^{-5}\right)$
$a=9.81-\left[6.9 \times 10^{-5}\right] / \rho \times 4 / 3 \pi \times\left(1.5 \times 10^{-3}\right)^{3}$
(9.81-4.88)

M1
$a=4.9(3) \mathrm{m} \mathrm{s}^{-2}$
(b) (i) $a=g$ at time $t=0$

B1
a decreases (as time increases)
B1
a goes to zero B1
(ii) Correct shape below original line M1 sketch goes to terminal velocity earlier A1 (either one of the definitions for the second mark)
(b) a body continues at rest or at constant velocity unless acted on by a resultant (external) force
A1

