Newton's Laws of Motion

Mark Scheme 2

Level	International A Level				
Subject	Physics				
Exam Board	CIE				
Topic	Dynamics				
Sub Topic	Newton's Laws of Motion				
Paper Type	Theory				
Booklet	Mark Scheme 2				

Time Allowed: 65 minutes

Score: /54

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a weight = $m \times g$ = 130.5 × 9.81 = 1280 N

F = ma(b)

$$T - 1280 = 130.5 \times 0.57$$

 $T = 1280 + 74.4 = 1350 \text{ N}$

(ii) 1280 N

(c) $1240 - 1280 = 130.5 \times a$ $a = (-) 0.31 \,\mathrm{m \, s^{-2}}$

1. 3.5 s (d)

2. 6.5 s

Α1 [1]

(ii) basic shape correct points M1 A1 [2]

(a point at which (whole) weight (of body) (allow mass for weight) 2 appears / seems to act ... (for mass need 'appears to be concentrated') M1 Α1

(b) (i) point C shown at centre of rectangle ± 5 mm

[1]

[3]

[2]

(ii) arrow vertically downwards, from C with arrow starting from the same margin of error as in (b)(i)

B1 [1]

(c) (i) reaction / upwards / supporting / normal reaction force friction force(s) at the rod

M1 M1 **A**1

(ii) comes to rest with (line of action of) weight acting through rod allow C vertically below the rod

B1

so that weight does not have a moment about the pivot / rod

[2] **B1**

3 (i) force is rate of change of momentum B1 [1] (ii) force on body A is equal in magnitude to force on body B (from A)M1 [3] [1] В1 [1] (ii) $\Delta p = F_A t_A = -F_B t_B$ **B**1 [1] (c) graph: momentum change occurs at same times for both spheres B1 final momentum of sphere B is to the right M1 and of magnitude 5 N s [3] Α1 [2] (ii) either (air) resistance is zero weight / gravitational force is only forceB1 [1] [3] (for values $> \pm 0.2$ but ≤ 0.4 , allow 1 mark) (answer 3.3 m s⁻² scores no marks) (c) ([1] (use of $g = 10 \text{ m s}^{-2}$ then deduct mark but once only in the Paper) [1] [1] (allow ecf but only if resistive force remains positive)

[Total: 9]

5	(a)	point where whole weight of body (allow mass) may be <u>considered</u> to act (do not allow 'acts')				
	(b)	when CG below pivot, weight acts through the pivot (so) weight has no turning effect about pivot	B1 B1	[2]		
6	(a)	change in velocity/time (taken)	B1	[1]		
	(b)	velocity is a vector/velocity has magnitude & direction direction changing so must be accelerating				
	(c)	either $6.1 \times \cos 35 = 4.99 \text{ N}$ or scale shown so no resultant vertical force triangle of correct shape $6.1 \sin 35 = 3.5 \text{ N}$ resultant = $3.5 \pm 0.2 \text{ N}$ horizontally horizontal $\pm 3^{\circ}$ allow answer based on centripetal force: resultant is centripetal force (which is horizontal) resultant is horizontal component of tension $6.1 \sin 35 = 3.5 \text{ N}$ horizontally	B1 B1 B1 B1 (B1) (B1) (B1)	[4]		
	7 (a)	mass: measure of body's resistance/inertia to changes in velocity/motion				
	(b)	e.g. where gravitational field strength changes (change) in fluid surrounding body 1 each max 2 B2	[2]			