Newton's Laws of Motion Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Newton's Laws of Motion
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	65 minutes				
Score:	/54				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a weight $=m \times g$

$$
=130.5 \times 9.81=1280 \mathrm{~N}
$$

(b) $\quad F=m a$

$$
T-1280=130.5 \times 0.57
$$

$T=1280+74.4=1350 \mathrm{~N}$
(ii) 1280 N
(c) $1240-1280=130.5 \times a$
(d) \quad 1. 3.5 s
(ii) basic shape
(b) (i) point C shown at centre of rectangle $\pm 5 \mathrm{~mm}$
(ii) arrow vertically downwards, from C with arrow starting from the same margin of error as in (b)(i)
(c) (i) reaction / upwards / supporting / normal reaction force
friction
M1
force(s) at the rod
A1
(ii) comes to rest with (line of action of) weight acting through rod allow C vertically below the rod B1 so that weight does not have a moment about the pivot / rod B1
3 (a) (i) force is rate of change of momentum B1
(ii) force on body A is equal in magnitude to force on body B (from A) M1
forces are in opposite directions A1
forces are of the same kind A1
(b) (i) $1 F_{A}=-F_{B}$ B1
$2 t_{\mathrm{A}}=t_{\mathrm{B}}$
[1]
B1
(ii) $\Delta p=F_{A} t_{A}=-F_{B} t_{B}$
[1]
(c) graph: momentum change occurs at same times for both spheres B1
final momentum of sphere B is to the right M1
and of magnitude 5 N s A1
4 (a) (i) (air) resistance increases with speed M1
resultant / accelerating force decreases
resultant / accelerating force decreases A1 A1
(ii) either (air) resistance is zero
(ii) either (air) resistance is zero
or weight / gravitational force is only force
or weight / gravitational force is only force B1 B1
(b) use of gradient of a tangent
(b) use of gradient of a tangent M1 M1
acceleration $=1.9 \pm 0.2 \mathrm{~m} \mathrm{~s}^{-2}$
acceleration $=1.9 \pm 0.2 \mathrm{~m} \mathrm{~s}^{-2}$ A2 A2
(for values $> \pm 0.2$ but ≤ 0.4, allow 1 mark) (answer $3.3 \mathrm{~m} \mathrm{~s}^{-2}$ scores no marks)
(c) (1 weight $=90 \times 9.8=880 \mathrm{~N}$
(c) (1 weight $=90 \times 9.8=880 \mathrm{~N}$ A1 A1
(use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ then deduct mark but once only in the Paper)
(use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ then deduct mark but once only in the Paper)
2 accelerating force $=90 \times 1.9=170 \mathrm{~N} \quad \ldots$ (allow ecf)
2 accelerating force $=90 \times 1.9=170 \mathrm{~N} \quad \ldots$ (allow ecf) A1 A1
(ii) resistive force $=880-170=710 \mathrm{~N}$
(ii) resistive force $=880-170=710 \mathrm{~N}$ A1 A1
(allow ecf but only if resistive force remains positive)
(allow ecf but only if resistive force remains positive)
[1][3]

(a)	point where whole weight of body (allow mass) may be considered to act (do not allow 'acts')	M
(b)	when CG below pivot, weight acts through the pivot (so) weight has no turning effect about pivot	B
	B1	

(a)
(a) change in velocity/time (taken)

B1
(b) velocity is a vector/velocity has magnitude \& direction B1 direction changing so must be accelerating B1
(c)
either $6.1 \times \cos 35=4.99 \mathrm{~N}$
so no resultant vertical forc
$6.1 \sin 35=3.5 \mathrm{~N}$
horizontally
or scale shown B1
triangle of correct shape B1
resultant $=3.5 \pm 0.2 \mathrm{~N} \quad \mathrm{~B} 1$
horizontal $\pm 3^{\circ} \quad \mathrm{B} 1$
allow answer based on centripetal force:
resultant is centripetal force (which is horizontal)
resultant is horizontal component of tension
$6.1 \sin 35=3.5 \mathrm{~N}$
horizontally

7 (a) mass: measure of body's resistance/inertia to changes in velocity/motion B1 weight: effect of gravitational field on mass or force of gravity B1 any further comment e.g. mass constant, weight varies/ weight $=\mathrm{mg} /$ scalar and vector B1
(b) e.g. where gravitational field strength changes (change) in fluid surrounding body.... 1 each, max 2 B2

