Newton's Laws of Motion Mark Scheme 3

Level		Internationa	l A Level		
Subject		Physics			
Exam Board		CIE			
Торіс		Dynamics			
Sub Topic		Newton's La	ws of Motio	n	
Paper Type		Theory			
Booklet		Mark Schem	ie 3		
Time Allowed:	80 minutes	5			
Score:	/66				
Percentage:	/100				
A* A	В	C	D	F	U
			UN	_	
>85% '77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	$4.5 \times 50 - 2.8 \times M$ (=)	C1			
		$() = -1.8 \times 50 + 1.4 \times M$	C1			
		(<i>M</i> =) 75 g	A1	[3]		
	(b)	total initial kinetic energy/KE not equal to the total final kinetic energy/KE				
		or relative speed of approach is not equal to relative speed of separation				
		so not elastic or is inelastic	B1	[1]		
	(c)	force on X is equal and opposite to force on Y (Newton III)	M1			
		force equals/is proportional to rate of change of momentum (Newton II)	M1			
		time of collision same for both balls hence change in momentum is the same	A1	[3]		

2	(a (i)	acceleration = $(v - u) / t$ or $(12 - 0.5) / 4$	C1	
		= $(12 - 0.5) / 4 = 2.9 (2.875)$ (= approximately 3 m s^{-2})	M1	[2]
	(ii)	x = (u+v)t/2		
		$= [(12 + 0.5) \times 4] / 2$	C1	
		= 25 m	А	[2]
	(iii)	line with increasing gradient non-zero gradient at origin	M1 A1	[2]
	(b) (i)	weight down slope = $2 \times 9.81 \times \sin 25^\circ$ = 8.29 / 8.3	M1	[1]
	(ii)	$(F = ma)$ 8.3 – $F_{\rm R} = 2 \times 2.9$	C1	
		F _R = 2.5 (2.3 if 3 used for <i>a</i>) N	A1	[2]

3	(a	(i)	<i>either</i> rate of change of displacement <i>or</i> (change in) displacement/time (taken)	B1	[1]
		(ii)	speed has magnitude only velocity has magnitude and direction	B1 B1	[2]
	(b)	(i)	idea of area under graph/use of $s = \frac{(u+v)}{2} \times t$	C1	
			$s = \frac{(18+32)}{2} \times 2.5$	C1	
			= 62.5 m	A1	[3]
		(ii)	a = (18 - 32)/2.5 (= -5.6) F = ma	C1 C1	[0]
			$F = 1500 \times (-) 5.6 = (-) 8400 \text{ N}$	A1	[3]
	(c)	arro	ow labelled A and arrow labelled F both to the left	B1	[1]
4	(a	uni all (its for <i>D</i> identified as kg m s ⁻² other units shown: units for <i>A</i> : m ² units for v^2 : m ² s ⁻² units for ρ : k	M1 g m ⁻³	
		C =	$=\frac{\text{kgms}^{-2}}{\text{kgm}^{-3}\text{ m}^{2}\text{ m}^{2}\text{ s}^{-2}}$ with cancelling/simplification to give C no uni	ts A1	[2]
	(b)	(i)	straight line from $(0,0)$ to $(1,9.8) \pm$ half a square	B1	[1]
		(ii)	$\frac{1}{2} mv^2 = mgh$ or using $v^2 = 2 as$ $v = (2 \times 9.81 \times 1000)^{1/2} = 140 \mathrm{m s^{-1}}$	C1 A1	[2]
	(c)	(i)	weight = drag (<i>D</i>) (+ upthrust) Allow <i>mg</i> or <i>W</i> for weight and <i>D</i> or expression for <i>D</i> for drag	B1	[1]
		(ii)	1. $mg = 1.4 \times 10^{-5} \times 9.81$	C1	
			$1.4 \times 10^{-5} \times 9.81 = 0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^2$	M1	
			$v = 7.33 \mathrm{ms^{-1}}$	A0	[2]
			2. line from (0,0) correct curvature to a horizontal line at veloc line reaches 7 m s^{-1} between 1.5 s and 3.5 s	ity of 7 m s ^{−1} M1 A	[2]

5	(a)	2.4s	A1	[1]
	(b)	in (b) and (c) , allow answers as (+) or (-) recognises distance travelled as area under graph line height = $(\frac{1}{2} \times 2.4 \times 9.0) - (\frac{1}{2} \times 1.6 \times 6.0)$ = 6.0 m (allow 6m) (answer 15.6 scores 2 marks answer 10.8 or 4.8 scores 1 mark)	C1 C1 A1	[3]
		alternative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^2$ = 6.0 m (answer 66 scores 2 marks answer 36 or 30 scores 1 mark)		
	(c)	(i) change in momentum = 0.78 (9.0 + 4.2) (allow 4.2 ± 0.2) = 10.3 N s (allow 10 N s)	C1 A1	[2]
		(ii) force = $\Delta p / \Delta t$ or $m \Delta v / \Delta t$ = 10.3 / 3.5 / 0.08 = 2.9 N	C1 A1	[2]
	(d)	(2.9N	A1	[1]
		(ii) $g = \text{weight} / \text{mass}$	C1	
		= 2.970.78 = $3.7 \mathrm{m s^{-2}}$	A1	[2]
6	(a	a moment: force × <u>perpendicular</u> distance	M1	

(a	mor	ment: force × <u>perpendicular</u> distance	M1	
		of force from pivot / axis / point	A1	
	cou	ple: (magnitude of) one force × <u>perpendicular</u> distance	M1	
		between the two forces	A1	[4]
	(pel	nalise the 'perpendicular' omission once only)		
(b)	(i)	$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$ W = 250 N (248 N)	C1 A1	[2]
	(ii)	either friction at the pivot or small movement of weights	B1	[1]

7	(a	(i) $v^2 = 2as$ $1.2^2 = 2 \times a \times 1.9$ $a = 0.38 \text{ m s}^{-2}$	M1 A1	[2]
		(ii) $F = ma$ = 42 × 0.38 = 16 N	M1 A0	[1]
	(b)	power = Fv	C1	
		= 16 × 1.2 = 19 W	A1	[2]
	(c)	(i) component = $42 \times 9.8 \times \sin 2.8$ = 20.1 N	C1 A1	[2]
		(ii) accelerating force = $20.1 - 16 = 4.1 \text{ N}$ acceleration of trolley = $4.1 / 42 = 0.098 \text{ m s}^{-2}$	C1 C1	
		$3.5 = \frac{1}{2} \times 0.098 \times t^2$ t = 8.5 s	C1 A1	[4]
	(d)	<i>either</i> allows plenty of time to stop runaway trolley or speed of trolley increases gradually or trolley will travel faster (answer must be unambiguous when read in conjunction with question)	B1	[1]

