Newton's Laws of Motion Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Newton's Laws of Motion
Paper Type	Theory
Booklet	Mark Scheme 3

1 (a $4.5 \times 50-2.8 \times M(=\ldots)$

$$
(\ldots)=-1.8 \times 50+1.4 \times M \quad \text { C1 }
$$

$$
(M=) 75 \mathrm{~g}
$$

(b) total initial kinetic energy/KE not equal to the total final kinetic energy/KE or relative speed of approach is not equal to relative speed of separation so not elastic or is inelastic
(c) force on X is equal and opposite to force on Y (Newton III)

$$
=(12-0.5) / 4=2.9(2.875)\left(=\text { approximately } 3 \mathrm{~m} \mathrm{~s}^{-2}\right) \quad \mathrm{M} 1
$$

(ii) $x=(u+v) t / 2$

$$
\begin{aligned}
& =[(12+0.5) \times 4] / 2 \\
& =25 \mathrm{~m}
\end{aligned}
$$

(iii) line with increasing gradient non-zero gradient at origin
(b) (i) weight down slope $=2 \times 9.81 \times \sin 25^{\circ}=8.29 / 8.3$
(ii) $(F=m a) \quad 8.3-F_{R}=2 \times 2.9$
$F_{\mathrm{R}}=2.5$ (2.3 if 3 used for a) N

C1
A
M1
A1
[2]

3
(a (i) either rate of change of displacement or (change in) displacement/time (taken)
(ii) speed has magnitude only B1 velocity has magnitude and direction B1
(b) (i) idea of area under graph/use of $s=\frac{(u+v)}{2} \times t$

$$
\begin{aligned}
s & =\frac{(18+32)}{2} \times 2.5 \\
& =62.5 \mathrm{~m}
\end{aligned}
$$

A1
(ii) $a=(18-32) / 2.5(=-5.6)$

C1
$F=m a$
C1
$F=1500 \times(-) 5.6=(-) 8400 \mathrm{~N}$
A1
(c) arrow labelled A and arrow labelled F both to the left

B1

4 (a units for D identified as $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
all other units shown: units for $A: \mathrm{m}^{2}$ units for $v^{2}: \mathrm{m}^{2} \mathrm{~s}^{-2}$ units for $\rho: \mathrm{kg} \mathrm{m}^{-3}$
$C=\frac{\mathrm{kgms}^{-2}}{\mathrm{~kg} \mathrm{~m}^{-3} \mathrm{~m}^{2} \mathrm{~m}^{2} \mathrm{~s}^{-2}}$ with cancelling / simplification to give C no units
A1
[2]
(b) (i) straight line from $(0,0)$ to $(1,9.8) \pm$ half a square
(ii) $1 / 2 m v^{2}=m g h \quad$ or using $v^{2}=2$ as
$v=(2 \times 9.81 \times 1000)^{1 / 2}=140 \mathrm{~m} \mathrm{~s}^{-1}$
(c) (i) weight = drag (D) (+ upthrust)

Allow $m g$ or W for weight and D or expression for D for drag
(ii) 1. $m g=1.4 \times 10^{-5} \times 9.81$
$1.4 \times 10^{-5} \times 9.81=0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^{2}$
$v=7.33 \mathrm{~m} \mathrm{~s}^{-1}$
A0
2. line from $(0,0)$ correct curvature to a horizontal line at velocity of $7 \mathrm{~ms}^{-1}$ line reaches $7 \mathrm{~m} \mathrm{~s}^{-1}$ between 1.5 s and 3.5 s
(b) in (b) and (c), allow answers as (+) or (-) recognises distance travelled as area under graph line C1
 $=6.0 \mathrm{~m}$ (allow 6 m) A1 (answer 15.6 scores 2 marks answer 10.8 or 4.8 scores 1 mark)
alternative solution: $s=u t-1 / 2 a t^{2}$

$$
\begin{aligned}
& =(9 \times 4)-1 / 2 \times(9 / 2.4) \times 4^{2} \\
& =6.0 \mathrm{~m}
\end{aligned}
$$

(answer 66 scores 2 marks
answer 36 or 30 scores 1 mark)
(c) (i) change in momentum $=0.78(9.0+4.2)$ (allow $4.2 \pm 0.2) \ldots \ldots \quad \mathrm{C} 1$ $=10.3 \mathrm{~N} \mathrm{~s}$ (allow 10 N s) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots \ldots$
(ii) force $=\Delta p / \Delta t$ or $m \Delta v / \Delta t \ldots \ldots$ C1

$$
\begin{aligned}
& =10.3 / 3.5 / 0.08 \\
& =2.9 \mathrm{~N} \\
& \text { A1 }
\end{aligned}
$$

(d) $(2.9 \mathrm{~N}$ A1
(ii) $g=$ weight $/$ mass C1
$=2.9 / 0.78$ $=3.7 \mathrm{~m} \mathrm{~s}^{-2}$ A1

[3]

6 (a moment: force \times perpendicular distance M1
of force from pivot / axis / point A1
couple: (magnitude of) one force \times perpendicular distance M1
between the two forces A1(penalise the 'perpendicular' omission once only)
(b) (i) $W \times 4.8=(12 \times 84)+(2.5 \times 72)$ C1
$W=250 \mathrm{~N}(248 \mathrm{~N})$
$W=250 \mathrm{~N}(248 \mathrm{~N})$ A1 A1
(ii) either friction at the pivot or small movement of weights B1

7
(a (i) $v^{2}=2 a s$
$1.2^{2}=2 \times a \times 1.9 \quad$ M1
$a=0.38 \mathrm{~m} \mathrm{~s}^{-2}$
(ii) $F=m a$
$=42 \times 0.38$

$$
=16 \mathrm{~N}
$$

(b) power = Fv

$$
\begin{aligned}
& =16 \times 1.2 \\
& =19 \mathrm{~W}
\end{aligned}
$$

(c) (i) component $=42 \times 9.8 \times \sin 2.8$

$$
=20.1 \mathrm{~N}
$$

(ii) accelerating force $=20.1-16=4.1 \mathrm{~N}$ acceleration of trolley $=4.1 / 42=0.098 \mathrm{~m} \mathrm{~s}^{-2}$ $s=1 / 2 a t^{2}$ $3.5=1 / 2 \times 0.098 \times t^{2}$ $t=8.5 \mathrm{~s}$
(d) either allows plenty of time to stop runaway trolley or speed of trolley increases gradually
or trolley will travel faster
(answer must be unambiguous when read in conjunction with question)

A1

M1 C1 C1

B1
\square

