Linear Momentum Mark Scheme 1

Level			Internat	ional A Level		
Subject			Physics			
Exam Bo	bard		CIE			
Торіс			Dynamic	cs		
Sub Topi	ic		Linear N	lomentum		
Paper Ty	/pe		Theory			
Booklet			Mark Sc	heme 1		
Time Allowed:		52 minut	es			
Score:		/43				
Percentage:		/100				
A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	$4.5 \times 50 - 2.8 \times M$ (=)	C1

$$(...) = -1.8 \times 50 + 1.4 \times M$$
 C1

- (b) total initial kinetic energy/KE not equal to the total final kinetic energy/KE or relative speed of approach is not equal to relative speed of separation so not elastic or is inelastic
 (c) force on X is equal and opposite to force on Y (Newton III)
- force equals/is proportional to rate of change of momentum (Newton II) M1 time of collision same for both balls hence change in momentum is the same A1 [3]

2	(a	(p =	=) <i>mv</i>	C1	
		Δp	$(= -6.64 \times 10^{-27} \times 1250 - 6.64 \times 10^{-27} \times 1250) = 1.66 \times 10^{-23} \text{ Ns}$	A1	[2]
	(b)	(i)	molecule collides with wall/container and there is a change in momentum	B1	
			change in momentum / time is force or $\Delta p = Ft$	B1	
			many/all/sum of molecular collisions over surface/area of container produces		
			pressure		[3]
		(ii)	more collisions per unit time so greater pressure	B1	[1

3	(a	for a pro	M1 A1	[2]	
	(b)	(i)	total momentum = $m_1v_1 + m_2v_2$ = 0.4 × 0.65 + 0.6 × 0.45 = 0.26 + 0.27 = 0.53 N s	C1 C1 A	[3]
		(ii)	$0.53 = 0.4 \times 0.41 + 0.6 \times v$	C1	
			$v = 0.366 / 0.6 = 0.61 \mathrm{m s^{-1}}$	A1	[2]
		(iii)	KE = $\frac{1}{2}mv^2$ total initial KE = $\frac{1}{2} \times 0.4 \times (0.65)^2 + \frac{1}{2} \times 0.6 \times (0.45)^2$ = 0.0845 + 0.06075 = 0.15(0.145) J	C1 C1 A	[3]
	(c)		eck relative speed of approach equals relative speed of separation		
		or: tota	al final kinetic energy equals the total initial kinetic energy	B1	[1]
	(d)		forces on the two bodies (or on X and Y) are equal and opposite e same for both forces <u>and</u> force is change in momentum/time	B1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —

4	(a	(i)		e total momentum of a system (of interacting bodies) remains constant ovided there are no resultant external forces / isolated system	M1 A1	[2]]
		(ii)		stic: total kinetic energy is conserved, inelastic: loss of kinetic energy ow elastic: relative speed of approach equals relative speed of separation]	B1 [1]		
		(b)	(i)	(i) initial mom: $4.2 \times 3.6 - 1.2 \times 1.5$ (= $15.12 - 1.8 = 13.3$) final mom: $4.2 \times v + 1.5 \times 3$ $v = (13.3 - 4.5) / 4.2 = 2.1 \text{ m s}^{-1}$			
			(ii)	initial kinetic energy = $\frac{1}{2} m_A (v_A)^2 + \frac{1}{2} m_B (v_B)^2$ = 27.21 + 1.08 = 28(.28) final kinetic energy = 9.26 + 6.75 = 16 initial KE is not the same as final KE hence inelastic <i>provided final KE less than initial KE</i> [allow in terms of relative speeds of approach and separation]		M1 M1 A1	[3]
5		(a	(i)	horizontal velocity = $15 \cos 60^\circ = 7.5 \mathrm{m s^{-1}}$	ļ	41	[1]
		((ii)	vertical velocity = $15 \sin 60^\circ = 13 \mathrm{m s^{-1}}$	ļ	41	[1]
	1	(b)		$v^2 = u^2 + 2as$ $s = (13)^2 / (2 \times 9.81) = 8.6(1) m$ using $g = 10$ then max. 1	ļ	\ 1	[1]
		((ii)	<i>t</i> = 13 / 9.81 = 1.326 s or <i>t</i> = 9.95 / 7.5 = 1.327 s	ļ	41	[1]
		(i	iii)	velocity = $6.15 / 1.33$ = $4.6 \mathrm{m s^{-1}}$		/11 \0	[1]
		(c)	(i)	change in momentum = $60 \times 10^{-3} [-4.6 - 7.5]$ = (-)0.73 N s		C1 \1	[2]
		(final velocity / kinetic energy is less after the collision or relative speed of separation < relative speed of approach hence inelastic		/11 \0	[1]