Linear Momentum

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Linear Momentum
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed: 66 minutes

Score: /55

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	(i)	either sum / total momentum (of system of bodies) is constant or total momentum before = total momentum after for an isolated system / no (systems) force and an eventum.		[0]
			for an isolated system / no (external) force acts on system	A1	[2]
		(ii)	zero momentum before / after decay		
			so α -particle and nucleus D must have $\underline{\text{momenta}}$ in opposite directions .	A1	[2]
	(b)	(i)	kinetic energy = $\frac{1}{2} mv^2$ 1.0 × 10 ⁻¹² = $\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$	C1	
			$1.0 \times 10^{-12} = \frac{1}{2} \times 4 \times \underline{1.66} \times 10^{-27} \times v^2$	M1	
			$v = 1.7 \times 10^7 \mathrm{m s^{-1}}$	AU	[2
		(ii)	$1.7 \times 10^7 \times 4u = 216u \times V$		
			$V = 3.1 \times 10^5 \mathrm{m s^{-1}}$	A1	[2]
			(accept 3.2×10^5 m s ⁻¹ , do not accept 220 rather than 216)		
			7. 2		
	(c)	(1.7	$(2 \times 10^{7})^{2} = 2 \times deceleration \times 4.5 \times 10^{-2}$	C1	[2]
			cept calculation based on calculating $F = 2.22 \times 10^{-11} \text{ N}$	A1	[2]
			I then use of F = ma)		
				[Total	. 401
				[10tai	. 10]
2	(a)	(i)	speed = 4.0 m s ⁻¹ (allow 1 s.f.)	A1	[1]
	(-)				
		(ii)	$v^2 = 2gh$ = 2 × 9.8 × 1.96	N/1	
			$v = 6.2 \text{ m s}^{-1}$		[1]
			(use of $a = 10 \text{ m s}^{-2} \text{ loses the mark}$)		[.]
			(use of g = 10 m s loses the mark)		
	(b)	cor	rect basic shape with correct directions for vectors	M1	
		spe	eed = (7.4 ± 0.2) m s ⁻¹	A1	
		,	$33\pm2)^\circ$ to the vertical		[3]
		(101	credit to be awarded, speed and angle must be correct on the diagram – i	ioi caiculai	eu)
	(c)	(i)	either $v^2 = 2 \times 9.8 \times 0.98$ or $v = 6.2 / \sqrt{2}$	C1	
	` '	()	speed = 4.4 m s^{-1}		[2]
			(allow calculation of $t = 0.447$ s, then $v = 4.4$ m s ⁻¹)		
		(ii)	1 momentum = <i>mv</i>	C1	
		•	change in momentum = 0.034 (6.2 + 4.4)	C1	
			$= 0.36 \text{ kg m s}^{-1}$ (use of 0.034 (6.2 - 4.4) loses last two marks)	A1	[3]
			2 force = $\Delta p / \Delta t$ (however expressed)	C1	
			$=\frac{0.36}{0.12}$		
			0.12 = 3.0 N(allow 1 s.f.)	A 4	ro:
			- 3 1 N (000W 1 0 t)	Λ1	[2]

3	(a)	ball moving in opposite direction (after collision)	 B1	[1]

(b) kinetic energy =
$$\frac{1}{2}mv^2$$
 C1
 $\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2 = 1.07 \times 10^{-12}$ A1
 $v = 1.8 \times 10^7 \text{ m s}^{-1}$ A0 [2]

- sum of momenta (in any direction) is constant (c) (i) / total momemtum is constant M1 in a closed system / no external force Α1 [2]
 - (ii) momentum of francium (= 0) = momentum of α + momentum of astatine C1 $204 \times V = 4 \times 1.8 \times 10^7$ C₁ $V = 3.5 \times 10^5 \text{ m s}^{-1}$ Α1 [3] (nuclei incorrectly identified, 0/3 nuclei correctly identified but incorrect masses, -1 each error)
- (d) another particle / photon is emitted M1 at an angle to the direction of the α -particle Α1 [2] (allow 1 mark for 'Francium nucleus is not stationary')

Α1

5 **(a)** (p =) mvВ1 (i) $E_{\rm k}=\frac{1}{2}mv^2$ В1 algebra leading to M1 $E_k = p^2/2m$ Α0 [3] $\Delta p = 0.035 (4.5 + 3.5)$ OR a = (4.5 + 3.5)/0.14= 0.28 N s = 57.1 m s⁻² (b) (i) C1 force= $\Delta p/\Delta t$ (= 0.28/0.14) OR F = ma (= 0.035 x 575.1) (allow e.c.f.) C1 **A1** Note: candidate may add mg = 0.34 N to this answer, deduct 1 mark upwards В1 [4] (ii) loss = $\frac{1}{2}$ x 0.035 (4.5² – 3.5²) C1 = 0.14 JΑ1 [2] (No credit for $0.28^2/(2 \times 0.035) = 1.12 \text{ J})$ plate (and Earth) gain momentum (c) e.g. i.e. discusses a 'syste **B1** equal and opposite to the change for the ball i.e. discusses force/moment M1 so momentum is conserved i.e. discusses consequence Α1 [3] **Total** [12]

CHEMISTRYONLINE