Linear Momentum
 Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Linear Momentum
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	75 minutes				
Score:	/62				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1
(a (i) $v=u+a t$
C1
$=4.23+9.81 \times 1.51$
M1
$=19.0(4) \mathrm{m} \mathrm{s}^{-1}$ (Allow 2 s.f.) A0
(Use of $-g$ max 1/2. Use of $g=10$ max 1/2. Allow use of 9.8 . Allow $19 \mathrm{~ms}^{-1}$)
(ii) either $s=u t+1 / 2 a t^{2} \quad$ (or $v^{2}=u^{2}+2$ as etc.)

$$
\begin{array}{ll}
=4.23 \times 1.51+0.5 \times 9.81 \times(1.51)^{2} & \text { C1 } \\
=17.6 \mathrm{~m}(\text { or } 17.5 \mathrm{~m}) & \text { A1 } \\
& (\text { Use of }- \text { g here wrong physics }(0 / 2))
\end{array}
$$

(b) (i) $F=\Delta P / \Delta t$ need idea of change in momentum C1
$=[0.0465 \times(18.6+19)] / 12.5 \times 10^{-3}$ C1 $=140 \mathrm{~N}$ A1
(Use of - sign max 2/4. Ignore -ve sign in answer) Direction: upwards
B1
(ii) $h=1 / 2 \times(18.6)^{2} / 9.81$
$=17.6 \mathrm{~m}$ (2 s.f. -1)
C1
(Use of $19 \mathrm{~m} \mathrm{~s}^{-1}, 0 / 2$ wrong physics)
(c) either kinetic energy of the ball is not conserved on impact
or speed before impact is not equal to speed after hence inelastic B1
(b) (i) $\Delta \rho=140 \times 10^{-3} \times(5.5+4.0)$

$$
=1.33 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
=33.3 \mathrm{~N}
$$

(c) (i) taking moments about B
$(33 \times 75)+(0.45 \times g \times 25)=F_{\mathrm{A}} \times 20 \quad$ C1
A1
(ii) $F_{B}=33+129+0.45 g$

A1
$F_{\mathrm{A}}=129 \mathrm{~N}$

$$
=166 \mathrm{~N}
$$

(a (i) path: reasonable curve upwards between plates

(ii) 1. $(F=) E . g$

2. $(t=) L / v$

B1
(b) (i) total momentum of a system remains constant or total momentum of a system before a collision equals total momentum after collision provided no external force acts on the system A1
(do not accept 'conserved' but otherwise correct statement gets 1/2)
(ii) $(\Delta p=) E q L / v$ allow ecf from (a)(ii)

B1
(iii) either charged particle is not an isolated system
so law does not apply
A1
or system is particle and 'plates'
equal and opposite Δp on plates / so law applies
(a) (i) force is rate of change of momentum ... B1
(ii) force on body A is equal in magnitude to force on body B (from A)M1
forces are in opposite directions ... A1
forces are of the same kind ..A1
(b) (i) $1 F_{A}=-F_{B}$ \qquad
(c) graph: momentum change occurs at same times for both spheres B1 final momentum of sphere B is to the right ... M1 and of magnitude 5 N s .. A1

5 (a (i) k is the reciprocal of the gradient of the graph
$k=\left\{32 /\left(4 \times 10^{-2}\right)=\right\} 800 \mathrm{Nm}^{-1}$
(ii) either energy $=$ average force \times extension or $1 / 2 k x^{2}$ or area under graph line
energy $=1 / 2 \times 800 \times\left(3.5 \times 10^{-2}\right)^{2}$ or $1 / 2 \times 28 \times 3.5 \times 10^{-2}$ energy $=0.49 \mathrm{~J}$
(b) (i) momentum before cutting thread $=$ momentum after
$0=2400 \times V-800 \times v$
$v / V=3.0$
(ii) energy stored in spring $=$ kinetic energy of trolleys
$0.49=1 / 2 \times 2.4 \times\left(\frac{1}{3} v\right)^{2}+1 / 2 \times 0.8 \times v^{2}$
$\mathrm{v}=0.96 \mathrm{~m} \mathrm{~s}^{-1}$

6 (a) constant gradient/straight line
(b) (1.2 s
(ii) 4.4 s

A1
A1 [2]
(c) either use of area under line or $h=$ average speed x time

$$
\begin{array}{rlrl}
\mathrm{h} & =1 / 2 \times(4.4-1.2) \times 32 & \mathbf{C 1} \\
& =51.2 \mathrm{~m} & & \mathbf{A 1}
\end{array}
$$

C1

A1 [3]
(allow $2 / 3$ marks for determination of $h=44 \mathrm{~m}$ or $h=58.4 \mathrm{~m}$ allow $1 / 3$ marks for answer 7.2 m)
(d) $\Delta \mathrm{p}=\mathrm{m} \Delta \mathrm{v}$ OR $\mathrm{p}=\mathrm{mv}$
$=0.25 \times(28+12)$
$=10 \mathrm{~N} \mathrm{~s}$
(answer 4 N s scores $2 / 3$ marks)
(e) (i) total/sum momentum before $=$ total/sum momentum after
in any closed system
(ii) either the system is the ball and Earth momentum of Earth changes by same amount but in the opposite direction
or Ball is not an isolated system/there is a force on the ball (B1) Gravitational force acts on the ball causes change in momentum/law does not apply here (B1) (if explains in terms of air resistance, allow first mark only)

