Forces

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density & Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 74 minutes

Score: /61

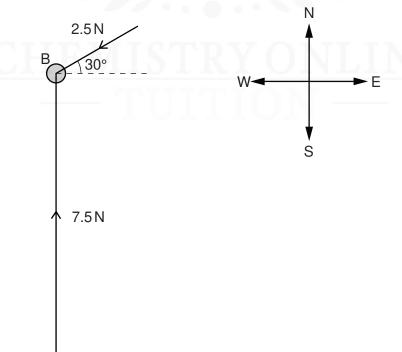
Percentage: /100

A*	Α –	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) The Young modulus of the metal of a wire is 1.8×10^{11} Pa. The wire is extended and the strain

produced is 8.2×10^{-4} . Calculate the stress in GPa.

stress =GPa [2]


- (b) An electromagnetic wave has frequency 12THz.
 - (i) Calculate the wavelength in μm .

wavelength = μ m [2]

(ii) State the name of the region of the electromagnetic spectrum for this frequency.

.....[1]

(c) An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

Dr. Asher Rana www.chemistryonlinetuition.com

asherrana@chemistryonlinetuition.com

A force of $7.5\,\mathrm{N}$ towards north and a force of $2.5\,\mathrm{N}$ from 30° north of east act on B. The mass of B is $750\,\mathrm{g}$.

- (i) On Fig. 1.1, draw an arrow to show the approximate direction of the resultant of these two forces. [1]
- (ii) 1. Show that the magnitude of the resultant force on B is 6.6 N.

[1]

2. Calculate the magnitude of the acceleration of B produced by this resultant force.

(iii) Determine the angle between the direction of the acceleration and the direction of the 7.5 N force.

2 A uniform plank AB of length 5.0 m and weight 200 N is placed across a stream, as shown in Fig. 3.1.

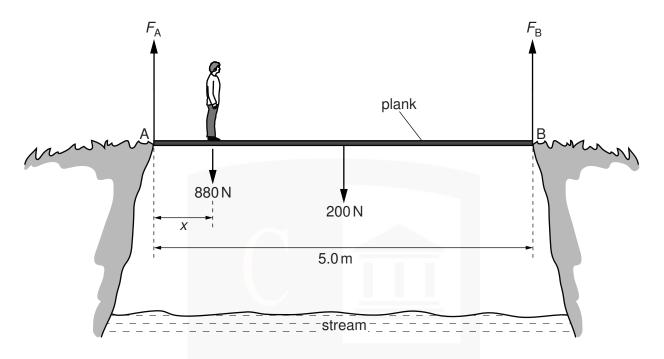


Fig. 3.1

A man of weight 880 N stands a distance x from end A. The ground exerts a vertical force $F_{\rm A}$ on the plank at end A and a vertical force $F_{\rm B}$ on the plank at end B. As the man moves along the plank, the plank is always in equilibrium.

(a)	(i)	Explain why the sum of the forces F_A and F_B is constant no matter where the man stands on the plank.
		[2]

(ii) The man stands a distance $x = 0.50 \,\mathrm{m}$ from end A. Use the principle of moments to calculate the magnitude of F_{B} .

(b) The variation with distance x of force F_A is shown in Fig. 3.2.

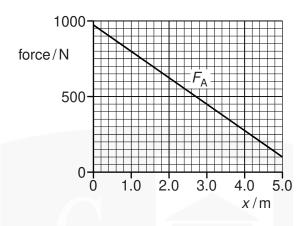


Fig. 3.2

On the axes of Fig. 3.2, sketch a graph to show the variation with x of force $F_{\rm B}$.

CHEMISTRY ONLINE

[3]

3 ((a)	Distinguish between	mass	and weight
- 1	~,	Diotingaion both con		and mongine

mass:		 		
•••••	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	
weight:		 		
•				
				[2]

(b) An object O of mass 4.9 kg is suspended by a rope A that is fixed at point P. The object is pulled to one side and held in equilibrium by a second rope B, as shown in Fig. 2.1.

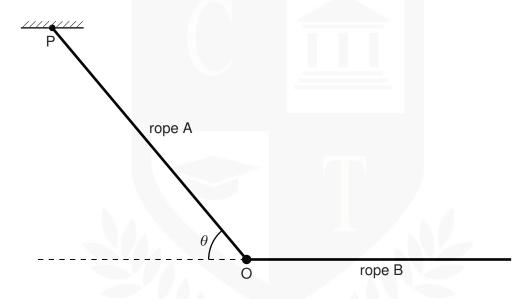


Fig. 2.1

Rope A is at an angle θ to the horizontal and rope B is horizontal. The tension in rope A is 69 N and the tension in rope B is T.

(i) On Fig. 2.1, draw arrows to represent the directions of all the forces acting on object O. [2]

(ii) Calculate

1. the angle θ ,

2. the tension *T*.

T = N [2]

4 (a) Define centre of gravity.

.....[2]

(b) A uniform rod AB is attached to a vertical wall at A. The rod is held horizontally by a string attached at B and to point C, as shown in Fig. 3.1.

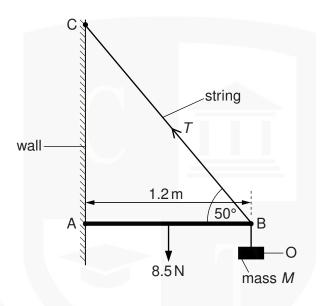


Fig. 3.1

The angle between the rod and the string at B is 50° . The rod has length $1.2 \,\mathrm{m}$ and weight $8.5 \,\mathrm{N}$. An object O of mass M is hung from the rod at B. The tension T in the string is $30 \,\mathrm{N}$.

(i) Use the resolution of forces to calculate the vertical component of T.

vertical component of $T = \dots N[1]$

(ii) State the principle of moments.

.....

.....[1

	(iii)	Use the principle of moments and take moments about A to show that the weight o the object O is 19 N.					
		[3]					
	(iv)	Hence determine the mass <i>M</i> of the object O.					
		<i>M</i> = kg [1]					
(c)) Use	the concept of equilibrium to explain why a force must act on the rod at A.					
		[2]					

5 ((a)	Define	power

(b) A cyclist travels along a horizontal road. The variation with time *t* of speed *v* is shown in Fig. 3.1.

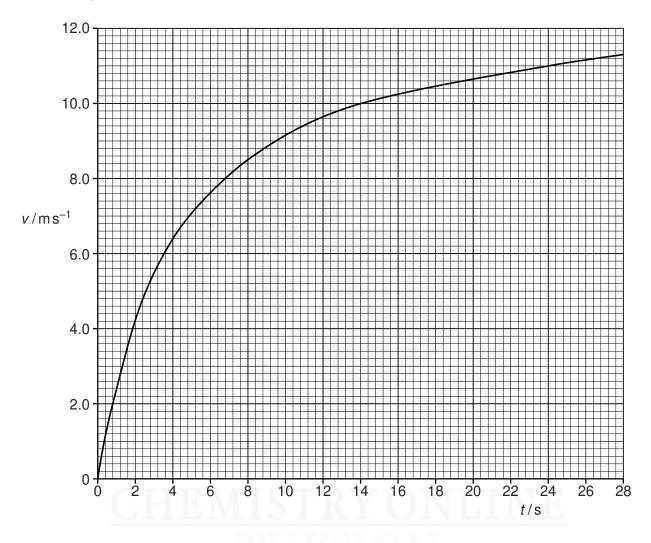


Fig. 3.1

The cyclist maintains a constant power and after some time reaches a constant speed of $12\,\mathrm{m\,s^{-1}}$.

(i)	Describe and explain the motion of the cyclist.
_	

[2] m s ⁻¹
[2] rce <i>R</i> ration
N [3]
n this
rr

6 A motor drags a log of mass 452 kg up a slope by means of a cable, as shown in Fig. 2.1.

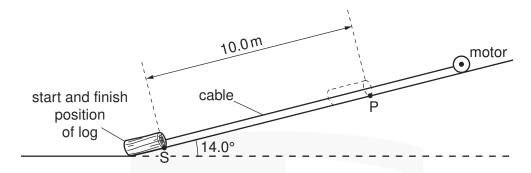


Fig. 2.1

The slope is inclined at 14.0° to the horizontal.

(a) Show that the component of the weight of the log acting down the slope is 1070 N.

[1]

- (b) The log starts from rest. A constant frictional force of 525 N acts on the log. The log accelerates up the slope at $0.130\,\mathrm{m\,s^{-2}}$.
 - (i) Calculate the tension in the cable.

CHEMISTRYONLINE

tension = N [3]

(ii) The log is initially at rest at point S. It is pulled through a distance of 10.0 m to point P.

Calculate, for the log,

1. the time taken to move from S to P,

time = s [2]

2. the magnitude of the velocity at P.

velocity = ms⁻¹ [1

(c) The cable breaks when the log reaches point P. On Fig. 2.2, sketch the variation with time t of the velocity v of the log. The graph should show v from the start at S until the log returns to S. [4]

