Moments
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density \& Pressure
Sub Topic	Moments
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	53 minutes						
Score:	/44						
Percentage:	/100						
A*	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a (i) (vertical component = $\left.44 \sin 30^{\circ}=\right) 22 \mathrm{~N}$
(ii) (horizontal component $\left.=44 \cos 30^{\circ}=\right) 38(.1) \mathrm{N}$
(b) $W \times 0.64=22 \times 1.60$
$(W=) 55 \mathrm{~N}$
A1
(c) F has a horizontal component (not balanced by W)
or F has 38 N acting horizontally
or 38 N acts on wall
or vertical component of F does not balance W or F and W do not make a closed triangle of forces

B1 [1
(d) line from P in direction towards point on wire vertically above W and direction up

2 (a torque of a couple $=$ one of the forces / a force \times distance
M1 multiplied by the perpendicular distance between the forces
(b) (i) weight at P (vertically) down B1
normal reaction OR contact force at (point of contact with the pin) P (vertically) up
(ii) torque $=35 \times 0.25($ or 25$) \times 2$

C1

$$
=18(17.5) \mathrm{Nm}
$$

A
(iii) the two 35 N forces are equal and opposite and the weight and the upward / contact / reaction force are equal and opposite
(iv) not in equilibrium as the (resultant) torque is not zero B1

3 (a torque is the product of one of the forces and the distance between forces
M1 the perpendicular distance between the forces
(b) (i) torque $=8 \times 1.5=12 \mathrm{Nm}$
(ii) there is a resultant torque / sum of the moments is not zero (the rod rotates) and is not in equilibrium
(c) (i) $\mathrm{B} \times 1.2=2.4 \times 0.45$ $B=0.9(0) \mathrm{N}$
(ii) $\mathrm{A}=2.4-0.9=1.5 \mathrm{~N} /$ moments calculation

4 (a point where the weight of an object / gravitational force may be considered to act
(b) product of the force and the perpendicular distance (to the pivot)
(c) (i) 1. sum / net / resultant force is zero
2. net / resultant moment is zero sum of clockwise moments = sum of anticlockwise moments
(ii) $W \times 0.2=80 \times 0.5+70 \times 1.3$

$$
=40+91
$$

$W=655 \mathrm{~N} \quad$ A1
(allow $2 / 3$ for one error in distance but $0 / 3$ if two errors)
(iii) move pivot to left gives greater clockwise moment / smaller anticlockwise moment
or
move W to right
gives smaller anticlockwise moment

B1 C1C1
\square
\square N \square
\square I

5 (a) product of (magnitude of one) force and distance between forces M1 reference to either perpendicular distance between forces or line of action of forces and perpendicular distance A1
(b) (i) 90°... B1
(ii) $130=F \times 0.45$ (allow e.c.f. for angle in (i)) C1 $F=290 \mathrm{~N}$... A1 (allow 1 mark only if angle stated in (i) is not used in (ii))

6 (a moment: force \times perpendicular distance M1 couple: (magnitude of) one force \times perpendicular distance M1 between the two forces A1 (penalise the 'perpendicular' omission once only)
(b) (i) $W \times 4.8=(12 \times 84)+(2.5 \times 72)$
$W=250 \mathrm{~N}(248 \mathrm{~N})$
C1
A1
(ii) either friction at the pivot or small movement of weights

B1

