Moments

Mark Scheme 1

Level	International A Level			
Subject	Physics			
Exam Board	CIE			
Topic	Forces, Density & Pressure			
Sub Topic	Moments			
Paper Type	Theory			
Booklet	Mark Scheme 1			

Time Allowed: 53 minutes

Score: /44

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 **(a (i)** (vertical component = 44 sin 30° =) 22 N A1 [1
 - (ii) (horizontal component = $44 \cos 30^\circ = 38(.1) N$ A1 [1
 - **(b)** $W \times 0.64 = 22 \times 1.60$
 - (W =) 55 N A1 [2]
 - (c) F has a horizontal component (not balanced by W) or F has 38 N acting horizontally or 38 N acts on wall or vertical component of F does not balance W or F and W do not make a closed triangle of forces
 B1 [1
 - (d) line from P in direction towards point on wire vertically above W and direction up B1 [1]
- 2 **(a** torque of a couple = <u>one</u> of the forces / a force × distance multiplied by the <u>perpendicular distance between the forces</u>

 M1

 A1 [2]
 - (b) (i) weight at P (vertically) down normal reaction OR contact force at (point of contact with the pin) P (vertically) up B1 [2]
 - (ii) torque = 35×0.25 (or 25) $\times 2$ C1 = 18 (17.5) N m A [2]
 - (iii) the two 35 N forces are equal and opposite and the weight and the upward / contact / reaction force are equal and opposite B1 [1]
 - (iv) not in equilibrium as the (resultant) torque is not zero B1 [1]

- (a torque is the product of one of the forces and the distance between forces M1 3 the perpendicular distance between the forces A1
 - [2]
 - **(b) (i)** torque = $8 \times 1.5 = 12 \text{ Nm}$ Α [1]
 - (ii) there is a resultant torque / sum of the moments is not zero M1 (the rod rotates) and is not in equilibrium A1 [2]
 - (c) (i) $B \times 1.2 = 2.4 \times 0.45$ C1 B = 0.9(0) NΑ1 [2]
 - (ii) A = 2.4 0.9 = 1.5 N / moments calculationA1 [1]
- point where the weight of an object / gravitational force M1 may be considered to act A1 [2]
 - (b) product of the force and the perpendicular distance (to the pivot) **B1** [1]
 - (c) (i) 1. sum / net / resultant force is zero **B1**
 - net / resultant moment is zero sum of clockwise moments = sum of anticlockwise moments **B1** [2]
 - (ii) $W \times 0.2 = 80 \times 0.5 + 70 \times 1.3$ C1 = 40 + 91 C1 W = 655 N Α1 [3] (allow 2/3 for one error in distance but 0/3 if two errors)
 - (iii) move pivot to left (M1)gives greater clockwise moment / smaller anticlockwise moment (A1) or move W to right (M1)gives smaller anticlockwise moment (A1)

[2]

5	(a)	product reference	M1 A1		[2]	
	(b)	(i) 90°		B1		[1]
		F=	= F × 0.45 (allow e.c.f. for angle in (i))	C1 A1		[2]
6	(a	moment couple:	: force × <u>perpendicular</u> distance of force from pivot / axis / point (magnitude of) one force × <u>perpendicular</u> distance between the two forces e the 'perpendicular' omission once only)		M1 A1 M1 A1	[4]
	(b)		4.8 = (12 × 84) + (2.5 × 72) 250 N (248 N)		C1 A1	[2]
		(ii) eith	er friction at the pivot or small movement of weights		B1	[1]