Density & Pressure Mark Scheme

Level International A Level Subject Physics From Beaud CLF
Subject Physics
Exam Board
Topic Forces, Density & Pressure
Sub Topic Density & Pressure
Paper Type Theory
Booklet Mark Scheme

Time Allowed:	71 minutes
Score:	/59
Percentage:	/100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a pressure = force / area

B1 [1]

(b)	molecules collide with object / surface and rebound	B1	
. ,	molecules have change in momentum hence force acts	B1	
	hence lower speed of molecules	B1	
	hence less pressure	A0	[3]

(c)	(i)	$\rho = m / V$ W = V $\rho q = 0.25 \times 0.45 \times 9.81 \times 13600$	C1 C1	
		= 15000 (15009)N	A1	[3]
	/ii\	p = W/A (or using $p = cab) = 15000$	0.45	

$$= 3.3 \times 10^4 \text{ Pa}$$
 A1 [1]

(iii) pressure will be greater due to the air pressure (acting on the surface of the liquid)

B1 [1

$V = h \times A$ $m = V \times \rho$ $W = h \times A \times \rho \times g$ P = F / A $P = h\rho g$ $P \text{ is proportional to } h \text{ if } \rho \text{ is constant (and } g)$	B1 B1 B1 B1	[4]
density changes with height hence density is not constant with link to formula	B1 B1	[4]
	$V = h \times A$ $m = V \times \rho$ $W = h \times A \times \rho \times g$ P = F / A $P = h\rho g$ $P \text{ is proportional to } h \text{ if } \rho \text{ is constant (and } g)$ density changes with height hence density is not constant with link to formula	$V = h \times A$ $m = V \times \rho$ B1 B1 B1 B1 P = F / A P = $h \rho g$ P is proportional to h if ρ is constant (and g)B1density changes with height hence density is not constant with link to formulaB1

Dr. Asher Rana

3	(a) density = mass / volume	B1	[1]
	(b) density of liquids and solids same order as spacing similar / to about density of gases much less as spacing much more or density of gases much lower hence spacing much more	2× B1 B1	[2]
	(c) (i) density = $68 / [50 \times 600 \times 900 \times 10^{-9}]$	C	
	$= 2520 \text{ (allow 2500) kg m}^{-3}$	A1	[2]
	(ii) $P = F / A$ = 68 × 9.81 / [50 × 600 × 10 ⁻⁶] = 2.2 × 10 ⁴ Pa	C1 C A1	[3]
4	(a mass / volume (ratio idea essential)	B1	[1]
	(b) (i) mass = $Ah\rho$	B1	[1]
	(ii) pressure = force/area weight (of liquid)/force (on base) = $Ah\rho g$ pressure = $h\rho g$	B1 B1 A0	[2]
	(c) (i) ratio = 1600 or 1600:1	A1	[1]
	(ii) ratio = $\sqrt[3]{1600}$ = 11.7 (allow 12)	А	[2]
	(d) (i) <u>density</u> of solids and liquids are (about) equal	B1	[1]
	 strong forces: fixed volume rigid forces: retains shape / does not flow / little deformation (allow 1 mark for fixed volume, fixed shape) 	B1 B1	[2]

asherrana@chemistryonlinetuition.com

5	(a)	ma	ss per unit	t volume (<i>ratio idea must be clear, not units</i>)	B1	[1]]
	(b)	(i)	pressure because	is same at the surface of <u>mercury</u> at same horizontal level	B1	[1]]
		(ii)	h ho g is sa 53×10^{-2} ho = 7.5 >	me for both $f^2 \times 1.0 \times 10^3 \times g$ = 71 $\times 10^{-2} \times \rho \times g$ $\propto 10^2 \text{ kg m}^{-3}$	B1 C1 A1	[3]]
6	(a)	(i) f	orce per unit area (ratio idea essential)		B1	
			(ii)	kg m ⁻¹ s ⁻²		B1	[2]
	(b)		ho has base unit kg m ⁻³ g has base unit m s ⁻² h $ ho$ g has base unit m × kg m ⁻³ × m s ⁻² same as pressure QED		B1 B1 M1 A0	[3]
7	(a p	ress	ure = force	e / area (normal to the force) [clear ratio essential]	B1	[1]	
	(b) (i	i) P	9 = mg/A	$A = (5.09 \times 9.81) / A$	C1		
		A	$= (\pi d^2 /$	4) = $\pi \times (9.4 \times 10^{-2})^2 / 4$ (= 0.00694 m ²)	C1		
		P	9 = 49.93 = 7200	/ 0.00694 (7195)Pa (minimum of 2 s.f. required)	A1	[3]	
	(ii	i) Δ	$P/P = \Delta$	$m/m + 2\Delta d/d$	C1		
			= 0.	01 / 5.09 + (2 × 0.1) / 9.4 (= 0.0020 + 0.021 or 2.3%)	C1		
		Δ	P = 170	(165 to 167)Pa		[3]	
	(iii	i) P	9 = 7200	± 200 Pa		[1]	

8	(a)	(i)	26 protons	B1	
		(ii)	30 neutrons	B1	[2]
	(b)	(i)	mass = $56 \times 1.66 \times 10^{-27}$ (allow x 1.67 x 10^{-27} but 0/2 for use of 26 or 30)	C1	
			$= 9.3 \times 10^{-26} \text{ kg}$	A1	
		(ii)	density = mass/volume where volume = $4/3 \times \pi \times r^3$ = $(9.3 \times 10^{-26})/(4/3 \times \pi \times \{5.7 \times 10^{-15}\}^3)$	C1	
			= $1.2 \times 10^{17} \text{ kg m}^{-3}$	A1	[4]
	(c)		nucleus occupies only very small fraction of <u>volume of atom</u> or 'lot of empty space inside atom' (do not allow spacing between atoms)	B1	
			any further good physics e.g. nuclear material is very dense	B1	[2]

