Density \& Pressure Mark Scheme

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density \& Pressure
Sub Topic	Density \& Pressure
Paper Type	Theory
Booklet	Mark Scheme

Time Allowed:	71 minutes						
Score:	/59						
Percentage:	/100						
A	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a pressure $=$ force / area
B1 [1]
(b) molecules collide with object / surface and rebound B1
molecules have change in momentum hence force acts B1fewer molecules per unit volume on top of mountain / temperature is lesshence lower speed of moleculesB1
hence less pressure A0
(c) (i) $\rho=m / V$ C1

$$
\begin{array}{rlrl}
W & =V \rho g=0.25 \times 0.45 \times 9.81 \times 13600 & \mathrm{C} 1 \\
& =15000(15009) \mathrm{N} & & \mathrm{~A} 1
\end{array}
$$

(ii) $p=W / A$ (or using $p=\rho g h$) $=15009 / 0.45$

$$
=3.3 \times 10^{4} \mathrm{~Pa}
$$

[3]
(iii) pressure will be greater due to the air pressure (acting on the surface of the liquid)

> B1

```
(a) \(V=h \times A\)
\(m=V \times \rho\)
B1
\(W=h \times A \times \rho \times g\)
B1
\(P=F / A\)
B1
\(P=h \rho g\)
\(P\) is proportional to \(h\) if \(\rho\) is constant (and \(g\) )
B1
(b) density changes with height \(\quad\) B1
hence density is not constant with link to formula
B1
```

(a) density = mass / volume

> B1
(b) density of liquids and solids same order as spacing similar / to about $2 \times$

B1
density of gases much less as spacing much more or density of gases much lower hence spacing much more

B1
(c) (i) density $=68 /\left[50 \times 600 \times 900 \times 10^{-9}\right]$

$$
=2520 \text { (allow } 2500) \mathrm{kg} \mathrm{~m}^{-3}
$$

C
A1
(ii) $P=F / A$

$$
\begin{aligned}
& =68 \times 9.81 /\left[50 \times 600 \times 10^{-6}\right] \\
& =2.2 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

(b) (i) mass $=A h \rho$

B1
(ii) pressure = force/area \quad B1 weight (of liquid)/force (on base) $=$ Ah $\rho g \quad \mathrm{~B} 1$ pressure $=h \rho g$ A0
(c) (i) ratio $=1600$ or 1600:1 A1
(ii) ratio $=\sqrt[3]{ } 1600$
$=11.7$ (allow 12)
A
(d) (i) density of solids and liquids are (about) equal B1
(ii) strong forces: fixed volume \quad B1 rigid forces: retains shape / does not flow / little deformation B1 (allow 1 mark for fixed volume, fixed shape)
(b) (i) pressure is same at the surface of mercury
because at same horizontal level B1
(ii) $h \rho g$ is same for both

B1
$53 \times 10^{-2} \times 1.0 \times 10^{3} \times g=71 \times 10^{-2} \times \rho \times g \quad \mathrm{C} 1$
$\rho=7.5 \times 10^{2} \mathrm{~kg} \mathrm{~m}^{-3}$
(a) (i) force per unit area (ratio idea essential)
(ii) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
(b) $\quad \rho$ has base unit $\mathrm{kg} \mathrm{m}^{-3}$

B1
g has base unit $\mathrm{m} \mathrm{s}^{-2} \quad$ B1
$h \rho g$ has base unit $\mathrm{m} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{m} \mathrm{s}^{-2}$ M1
same as pressure QED
A0

7 (a pressure = force / area (normal to the force) [clear ratio essential]
(b) (i) $P=m g / A=(5.09 \times 9.81) / A$

C1

$$
A=\left(\pi d^{2} / 4\right)=\pi \times\left(9.4 \times 10^{-2}\right)^{2} / 4\left(=0.00694 \mathrm{~m}^{2}\right)
$$

$$
\begin{aligned}
P & =49.93 / 0.00694 \\
& =7200(7195) \mathrm{Pa} \text { (minimum of } 2 \text { s.f. required) }
\end{aligned}
$$

(ii) $\Delta P / P=\Delta m / m+2 \Delta d / d$

$$
=0.01 / 5.09+(2 \times 0.1) / 9.4(=0.0020+0.021 \text { or } 2.3 \%)
$$

$$
\begin{equation*}
\Delta P=170(165 \text { to } 167) \mathrm{Pa} \tag{3}
\end{equation*}
$$

(iii) $P=7200 \pm 200 \mathrm{~Pa}$
8 (a) (i) 26 protons B1
(ii) 30 neutrons B1
(b) (i) mass $=56 \times 1.66 \times 10^{-27}$ C1
(allow $\times 1.67 \times 10^{-27}$ but $0 / 2$ for use of 26 or 30) $=9.3 \times 10^{-26} \mathrm{~kg}$ A1
(ii) density $=$ mass/volume where volume $=4 / 3 \times \pi \times r^{3}$. C1
$=\left(9.3 \times 10^{-26}\right) /\left(4 / 3 \times \pi \times\left\{5.7 \times 10^{-15}\right\}^{3}\right)$ $=1.2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$ A1
(c) nucleus occupies only very small fraction of volume of atom or 'lot of empty space inside atom' B1
(do not allow spacing between atoms)
any further good physics e.g. nuclear material is very dense B1
[2]
[4]

